Skip to main content

Research Repository

Advanced Search

Structural origins of dielectric anomalies in the filled tetragonal tungsten bronze Sr 2 NaNb 5 O 15 (2024)
Journal Article
Tidey, J., Dey, U., Sanchez, A., Chen, W., Chen, B., Chuang, Y., …Senn, M. (2024). Structural origins of dielectric anomalies in the filled tetragonal tungsten bronze Sr 2 NaNb 5 O 15. Communications Materials, 5(1), Article 71. https://doi.org/10.1038/s43246-024-00508-1

The tetragonal tungsten bronze, Sr2NaNb5O15, shows promise for application in high-temperature high-efficiency capacitors vital for the sustainable energy revolution. Previously, the structural complexity of this and related materials has obscured th... Read More about Structural origins of dielectric anomalies in the filled tetragonal tungsten bronze Sr 2 NaNb 5 O 15.

First-principles investigation of the magnetoelectric properties of Ba 7 Mn 4 O 15 (2023)
Journal Article
Dey, U., Senn, M. S., & Bristowe, N. (2024). First-principles investigation of the magnetoelectric properties of Ba 7 Mn 4 O 15. Journal of Physics: Condensed Matter, 36(9), Article 095701. https://doi.org/10.1088/1361-648x/ad0d27

Type-II multiferroics, in which the magnetic order breaks inversion symmetry, are appealing for both fundamental and applied research due their intrinsic coupling between magnetic and electrical orders. Using first-principles calculations we study th... Read More about First-principles investigation of the magnetoelectric properties of Ba 7 Mn 4 O 15.

Muon-spin relaxation investigation of magnetic bistability in a crystalline organic radical compound (2023)
Journal Article
Hernández-Melían, A., Huddart, B., Pratt, F., Blundell, S., Mills, M., Young, H., …Lancaster, T. (2023). Muon-spin relaxation investigation of magnetic bistability in a crystalline organic radical compound. Journal of Physics and Chemistry of Solids, 181, https://doi.org/10.1016/j.jpcs.2023.111493

We present the results of a muon-spin relaxation (𝜇+SR) investigation of the crystalline organic radicalcompound 4-(2-benzimidazolyl)-1,2,3,5-dithiadiazolyl (HbimDTDA), in which we demonstrate the hystereticmagnetic switching of the system that takes... Read More about Muon-spin relaxation investigation of magnetic bistability in a crystalline organic radical compound.

Many-body quantum muon effects and quadrupolar coupling in solids (2023)
Journal Article
Gomilšek, M., Pratt, F. L., Cottrell, S. P., Clark, S. J., & Lancaster, T. (2023). Many-body quantum muon effects and quadrupolar coupling in solids. Communications Physics, 6(1), https://doi.org/10.1038/s42005-023-01260-7

Strong quantum zero-point motion (ZPM) of light nuclei and other particles is a crucial aspect of many state-of-the-art quantum materials. However, it has only recently begun to be explored from an ab initio perspective, through several competing app... Read More about Many-body quantum muon effects and quadrupolar coupling in solids.

Twist-induced interlayer charge buildup in a WS2 bilayer revealed by electron Compton scattering and density functional theory (2023)
Journal Article
Talmantaite, A., Xie, Y., Cohen, A., Mohapatra, P., Ismach, A., Mizoguchi, T., …Mendis, B. (2023). Twist-induced interlayer charge buildup in a WS2 bilayer revealed by electron Compton scattering and density functional theory. Physical Review B, 107(23), Article 235424. https://doi.org/10.1103/physrevb.107.235424

Exotic properties emerge from the electronic structure of few-layer transition-metal dichalcogenides (TMDs), such as direct band gaps in monolayers and moiré excitons in twisted bilayers, which are exploited in modern optoelectronic devices and twist... Read More about Twist-induced interlayer charge buildup in a WS2 bilayer revealed by electron Compton scattering and density functional theory.

DFT + μ: Density functional theory for muon site determination (2023)
Journal Article
Blundell, S., & Lancaster, T. (2023). DFT + μ: Density functional theory for muon site determination. Applied Physics Reviews, 10(2), Article 021316. https://doi.org/10.1063/5.0149080

The technique of muon spin rotation (μSR) has emerged in the last few decades as one of the most powerful methods of obtaining local magnetic information. To make the technique fully quantitative, it is necessary to have an accurate estimate of where... Read More about DFT + μ: Density functional theory for muon site determination.

Bubble Formation in Magma (2023)
Journal Article
Gardner, J. E., Wadsworth, F. B., Carley, T. L., Llewellin, E. W., Kusumaatmaja, H., & Sahagian, D. (2023). Bubble Formation in Magma. Annual Review of Earth and Planetary Sciences, 51(1), 131-154. https://doi.org/10.1146/annurev-earth-031621-080308

Volcanic eruptions are driven by bubbles that form when volatile species exsolve from magma. The conditions under which bubbles form depend mainly on magma composition, volatile concentration, presence of crystals, and magma decompression rate. These... Read More about Bubble Formation in Magma.

Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence (2023)
Journal Article
Sudhakar, P., Kuila, S., Stavrou, K., Danos, A., Slawin, A. M., Monkman, A., & Zysman-Colman, E. (2023). Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence. ACS Applied Materials and Interfaces, 15(21), 25806-25818. https://doi.org/10.1021/acsami.3c05409

Extensive research has been devoted to the development of thermally activated delayed fluorescence emitters, especially those showing pure-blue emission for use in lighting and fullcolor display applications. Towards that goal, herein we report a nov... Read More about Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence.

A “Phase Scrambling” Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations (2023)
Journal Article
Mendis, B. G. (2023). A “Phase Scrambling” Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations. Microscopy and Microanalysis, 29(3), 1111-1123. https://doi.org/10.1093/micmic/ozad052

Multislice simulations of 4D scanning transmission electron microscopy (4D STEM) data are computationally demanding due to the large number of STEM probe positions that must be calculated. For accurate analysis, inelastic scattering from phonons and... Read More about A “Phase Scrambling” Algorithm for Parallel Multislice Simulation of Multiple Phonon and Plasmon Scattering Configurations.

Effective local potentials for density and density-matrix functional approximations with non-negative screening density (2023)
Journal Article
Pitts, T. C., Bousiadi, S., Gidopoulos, N. I., & Lathiotakis, N. N. (2023). Effective local potentials for density and density-matrix functional approximations with non-negative screening density. The Journal of Chemical Physics, 158(18), Article 184105. https://doi.org/10.1063/5.0143757

A way to improve the accuracy of the spectral properties in density functional theory (DFT) is to impose constraints on the effective, Kohn-Sham (KS), local potential [J. Chem. Phys. 136, 224109 (2012)]. As illustrated, a convenient variational quant... Read More about Effective local potentials for density and density-matrix functional approximations with non-negative screening density.

Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence (2023)
Journal Article
Paredis, S., Cardeynaels, T., Kuila, S., Deckers, J., Van Landeghem, M., Vandewal, K., …Maes, W. (2023). Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence. Chemistry - A European Journal, https://doi.org/10.1002/chem.202301369

Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound... Read More about Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence.

Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO (2023)
Journal Article
Miranda-Salinas, H., Rodriguez-Serrano, A., Kaminski, J. M., Dinkelbach, F., Hiromichi, N., Kusakabe, Y., …Monkman, A. P. (2023). Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO. Journal of Physical Chemistry C, 127(18), 8607-8617. https://doi.org/10.1021/acs.jpcc.2c07529

We present a joint experimental and theoretical study of the through-space charge transfer (CT) TADF molecule TpAT-tFFO. The measured fluorescence has a singular Gaussian line shape but two decay components, coming from two distinct molecular CT conf... Read More about Conformational, Host, and Vibrational Effects Giving Rise to Dynamic TADF Behavior in the Through-Space Charge Transfer, Triptycene Bridged Acridine-Triazine Donor Acceptor TADF Molecule TpAT-tFFO.

Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit (2023)
Journal Article
Fielding, S. M. (2023). Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit. Physical Review Letters, 130(17), Article 178203. https://doi.org/10.1103/physrevlett.130.178203

We introduce a model of friction between two contacting (stationary or cosliding) rough surfaces, each comprising a random ensemble of polydisperse hemispherical bumps. In the simplest version of the model, the bumps experience on contact with each o... Read More about Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit.