J. Chaves-Montero
ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales
Chaves-Montero, J.; Cabayol-Garcia, L.; Lokken, M.; Font-Ribera, A.; Aguilar, J.; Ahlen, S.; Bianchi, D.; Brooks, D.; Claybaugh, T.; Cole, S.; de la Macorra, A.; Ferraro, S.; Forero-Romero, J. E.; Gaztañaga, E.; Gontcho A Gontcho, S.; Gutierrez, G.; Honscheid, K.; Kehoe, R.; Kirkby, D.; Kremin, A.; Lambert, A.; Landriau, M.; Manera, M.; Martini, P.; Miquel, R.; Muñoz-Gutiérrez, A.; Niz, G.; Pérez-Ràfols, I.; Rossi, G.; Sanchez, E.; Schubnell, M.; Sprayberry, D.; Tarlé, G.; Weaver, B. A.
Authors
L. Cabayol-Garcia
M. Lokken
A. Font-Ribera
J. Aguilar
S. Ahlen
D. Bianchi
D. Brooks
T. Claybaugh
Professor Shaun Cole shaun.cole@durham.ac.uk
Professor
A. de la Macorra
S. Ferraro
J. E. Forero-Romero
E. Gaztañaga
S. Gontcho A Gontcho
G. Gutierrez
K. Honscheid
R. Kehoe
D. Kirkby
A. Kremin
A. Lambert
M. Landriau
M. Manera
P. Martini
R. Miquel
A. Muñoz-Gutiérrez
G. Niz
I. Pérez-Ràfols
G. Rossi
E. Sanchez
M. Schubnell
D. Sprayberry
G. Tarlé
B. A. Weaver
Abstract
On large scales, the Lyman-α forest provides insights into the expansion history of the Universe, while on small scales, it imposes strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a novel framework that bridges the gap between large- and small-scale analyses, which have traditionally relied on distinct modeling approaches. Using conditional normalizing flows, ForestFlow predicts the two Lyman-α linear biases (bδ and bη) and six parameters describing small-scale deviations of the three-dimensional flux power spectrum (P3D) from linear theory as a function of cosmology and intergalactic medium physics. These are then combined with a Boltzmann solver to make consistent predictions, from arbitrarily large scales down to the nonlinear regime, for P3D and any other statistics derived from it. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from z = 2 to 4.5, ForestFlow achieves 3 and 1.5% precision in describing P3D and the one-dimensional flux power spectrum (P1D) from linear scales to k = 5 Mpc−1 and k∥ = 4 Mpc−1, respectively. Thanks to its conditional parameterization, ForestFlow shows similar performance for ionization histories and two ΛCDM model extensions – massive neutrinos and curvature – even though none of these are included in the training set. This framework will enable full-scale cosmological analyses of Lyman-α forest measurements from the DESI survey.
Citation
Chaves-Montero, J., Cabayol-Garcia, L., Lokken, M., Font-Ribera, A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Forero-Romero, J. E., Gaztañaga, E., Gontcho A Gontcho, S., Gutierrez, G., Honscheid, K., Kehoe, R., Kirkby, D., …Weaver, B. A. (2025). ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales. Astronomy & Astrophysics, 694, A187. https://doi.org/10.1051/0004-6361/202452039
| Journal Article Type | Article |
|---|---|
| Acceptance Date | Jan 7, 2025 |
| Online Publication Date | Feb 11, 2025 |
| Publication Date | 2025-02 |
| Deposit Date | Mar 31, 2025 |
| Publicly Available Date | Mar 31, 2025 |
| Journal | Astronomy & Astrophysics |
| Print ISSN | 0004-6361 |
| Electronic ISSN | 1432-0746 |
| Publisher | EDP Sciences |
| Peer Reviewed | Peer Reviewed |
| Volume | 694 |
| Article Number | A187 |
| DOI | https://doi.org/10.1051/0004-6361/202452039 |
| Public URL | https://durham-repository.worktribe.com/output/3747020 |
Files
Published Journal Article
(1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
The onset of bar formation in a massive galaxy at z ∼ 3.8
(2025)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search