Skip to main content

Research Repository

Advanced Search

ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales

Chaves-Montero, J.; Cabayol-Garcia, L.; Lokken, M.; Font-Ribera, A.; Aguilar, J.; Ahlen, S.; Bianchi, D.; Brooks, D.; Claybaugh, T.; Cole, S.; de la Macorra, A.; Ferraro, S.; Forero-Romero, J. E.; Gaztañaga, E.; Gontcho A Gontcho, S.; Gutierrez, G.; Honscheid, K.; Kehoe, R.; Kirkby, D.; Kremin, A.; Lambert, A.; Landriau, M.; Manera, M.; Martini, P.; Miquel, R.; Muñoz-Gutiérrez, A.; Niz, G.; Pérez-Ràfols, I.; Rossi, G.; Sanchez, E.; Schubnell, M.; Sprayberry, D.; Tarlé, G.; Weaver, B. A.

ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales Thumbnail


Authors

J. Chaves-Montero

L. Cabayol-Garcia

M. Lokken

A. Font-Ribera

J. Aguilar

S. Ahlen

D. Bianchi

D. Brooks

T. Claybaugh

A. de la Macorra

S. Ferraro

J. E. Forero-Romero

E. Gaztañaga

S. Gontcho A Gontcho

G. Gutierrez

K. Honscheid

R. Kehoe

D. Kirkby

A. Kremin

A. Lambert

M. Landriau

M. Manera

P. Martini

R. Miquel

A. Muñoz-Gutiérrez

G. Niz

I. Pérez-Ràfols

G. Rossi

E. Sanchez

M. Schubnell

D. Sprayberry

G. Tarlé

B. A. Weaver



Abstract

On large scales, the Lyman-α forest provides insights into the expansion history of the Universe, while on small scales, it imposes strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a novel framework that bridges the gap between large- and small-scale analyses, which have traditionally relied on distinct modeling approaches. Using conditional normalizing flows, ForestFlow predicts the two Lyman-α linear biases (bδ and bη) and six parameters describing small-scale deviations of the three-dimensional flux power spectrum (P3D) from linear theory as a function of cosmology and intergalactic medium physics. These are then combined with a Boltzmann solver to make consistent predictions, from arbitrarily large scales down to the nonlinear regime, for P3D and any other statistics derived from it. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from z = 2 to 4.5, ForestFlow achieves 3 and 1.5% precision in describing P3D and the one-dimensional flux power spectrum (P1D) from linear scales to k = 5 Mpc−1 and k∥ = 4 Mpc−1, respectively. Thanks to its conditional parameterization, ForestFlow shows similar performance for ionization histories and two ΛCDM model extensions – massive neutrinos and curvature – even though none of these are included in the training set. This framework will enable full-scale cosmological analyses of Lyman-α forest measurements from the DESI survey.

Citation

Chaves-Montero, J., Cabayol-Garcia, L., Lokken, M., Font-Ribera, A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Forero-Romero, J. E., Gaztañaga, E., Gontcho A Gontcho, S., Gutierrez, G., Honscheid, K., Kehoe, R., Kirkby, D., Kremin, A., …Weaver, B. A. (2025). ForestFlow: predicting the Lyman-α forest clustering from linear to nonlinear scales. Astronomy & Astrophysics, 694, Article A187. https://doi.org/10.1051/0004-6361/202452039

Journal Article Type Article
Acceptance Date Jan 7, 2025
Online Publication Date Feb 11, 2025
Publication Date 2025-02
Deposit Date Mar 31, 2025
Publicly Available Date Mar 31, 2025
Journal Astronomy & Astrophysics
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 694
Article Number A187
DOI https://doi.org/10.1051/0004-6361/202452039
Public URL https://durham-repository.worktribe.com/output/3747020

Files





You might also like



Downloadable Citations