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ABSTRACT

On large scales, the Lyman-α forest provides insights into the expansion history of the Universe, while on small scales, it imposes strict constraints
on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a novel framework that
bridges the gap between large- and small-scale analyses, which have traditionally relied on distinct modeling approaches. Using conditional
normalizing flows, ForestFlow predicts the two Lyman-α linear biases (bδ and bη) and six parameters describing small-scale deviations of the
three-dimensional flux power spectrum (P3D) from linear theory as a function of cosmology and intergalactic medium physics. These are then
combined with a Boltzmann solver to make consistent predictions, from arbitrarily large scales down to the nonlinear regime, for P3D and any
other statistics derived from it. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from z = 2
to 4.5, ForestFlow achieves 3 and 1.5% precision in describing P3D and the one-dimensional flux power spectrum (P1D) from linear scales to
k = 5 Mpc−1 and k‖ = 4 Mpc−1, respectively. Thanks to its conditional parameterization, ForestFlow shows similar performance for ionization
histories and two ΛCDM model extensions – massive neutrinos and curvature – even though none of these are included in the training set. This
framework will enable full-scale cosmological analyses of Lyman-α forest measurements from the DESI survey.
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1. Introduction

The Lyman-α forest refers to absorption lines in the spec-
tra of high-redshift quasars resulting from Lyman-α absorp-
tion by neutral hydrogen in the intergalactic medium (IGM;
for a review, see McQuinn 2016). Even though quasars can be
observed at very high redshifts with relatively short exposure
times, the scarcity of these sources limits their direct use for
precision cosmology. Conversely, Lyman-α forest measurements
from a single quasar spectrum provide information about den-
sity fluctuations over hundreds of megaparsecs along the line of
sight, making this observable an excellent tracer of large-scale
structure at high redshifts.

Cosmological analyses of the Lyman-α forest rely on
either three-dimensional correlations of the Lyman-α transmis-
sion field (ξ3D; e.g., Slosar et al. 2011) or correlations along
the line-of-sight of each quasar (i.e., the one-dimensional
flux power spectrum P1D, Croft et al. 1998; McDonald et al.
2000). The first analyses set constraints on the expansion
history of the Universe by measuring baryonic acoustic
oscillations (BAO; e.g., Busca et al. 2013; Slosar et al. 2013;
du Mas des Bourboux et al. 2020), for which linear or perturba-
tion theory is accurate enough. On the other hand, P1D analy-
ses measure the small-scale amplitude and slope of the linear
power spectrum (e.g., Croft et al. 1998; McDonald et al. 2000,
2005; Zaldarriaga et al. 2001; Viel et al. 2004), the nature of
? Corresponding author; jchaves@ifae.es

dark matter (e.g., Seljak et al. 2006a; Viel et al. 2013; Iršič et al.
2017; Palanque-Delabrouille et al. 2020; Rogers & Peiris 2021a;
Iršič et al. 2024), the thermal history of the IGM (e.g.,
Viel & Haehnelt 2006; Bolton et al. 2008; Lee et al. 2015;
Walther et al. 2019; Boera et al. 2019; Gaikwad et al. 2020,
2021) and the reionization history of the Universe (see the
reviews Meiksin 2009; McQuinn 2016). In combination with
cosmic microwave background constraints, P1D analyses also
set tight constraints on the sum of neutrino masses and
the running of the spectral index (e.g., Spergel et al. 2003;
Verde et al. 2003; Viel et al. 2004; Seljak et al. 2005, 2006b;
Palanque-Delabrouille et al. 2015, 2020).

Unlike ξ3D studies, P1D analyses go deep into the non-
linear regime and require time-demanding hydrodynamical
simulations (e.g., Cen et al. 1994; Miralda-Escudé et al. 1996;
Meiksin et al. 2001; Lukić et al. 2015; Bolton et al. 2017;
Walther et al. 2021; Chabanier et al. 2023; Puchwein et al. 2023;
Bird et al. 2023). Naive analyses would demand running mil-
lions of hydrodynamical simulations, which is currently unfea-
sible. Rather, the preferred solution is constructing fast sur-
rogate models that make precise predictions across the input
parameter space using simulation measurements as the train-
ing set. The main advantage of these surrogate models, known
as emulators, is reducing the number of simulations required
for Bayesian inference from millions to dozens or hundreds.
In the context of Lyman-α forest studies, the first P1D emula-
tors involved simple linear interpolation (McDonald et al. 2006)
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and progressively moved toward using Gaussian processes
(GPs; Sacks et al. 1989; MacKay et al. 1998) and neural net-
works (NNs; McCulloch & Pitts 1943); for instance, Bird et al.
(2019, 2023), Rogers et al. (2019), Walther et al. (2019),
Pedersen et al. (2021), Takhtaganov et al. (2021), Rogers &
Peiris (2021b), Fernandez et al. (2022), Molaro et al. (2023), and
Cabayol-Garcia et al. (2023).

The primary purpose of this work is to provide consistent
predictions for Lyman-α forest clustering statistics from linear
to nonlinear scales. There are three main approaches to achieve
this. The first relies on perturbation theory (e.g., Givans & Hirata
2020; Chen et al. 2021; Ivanov 2024), which delivers precise
predictions on perturbative scales at the cost of marginalizing
over a large number of free parameters. The second involves
emulating power spectrum modes measured from a suite of cos-
mological hydrodynamical simulations, which provides precise
predictions from quasilinear to nonlinear scales. The main lim-
itation of this approach is that accessing the largest scales used
in BAO analyses, r ' 300 Mpc, would require hydrodynami-
cal simulations at least three times larger than this scale (e.g.,
Angulo et al. 2008), which is currently unfeasible due to the
computational demands of these simulations. Nonetheless, there
are recent strides in this direction using approximated methods
(e.g., Jacobus et al. 2023).

Instead, we adopt a third approach: emulating the best-fitting
parameters of a physically motivated Lyman-α clustering model
to measurements from a suite of cosmological hydrodynamical
simulations as a function of cosmology and IGM physics. In
what follows, we refer to this strategy as forestflow1. In this
work, we use conditional normalizing flows (cNF; Winkler et al.
2019; Papamakarios et al. 2019) to emulate the two Lyman-α
linear biases (bδ and bη), which completely determine the large-
scale behavior of P3D in conjunction with the linear power spec-
trum, along with six parameters capturing small-scale deviations
of P3D from linear theory as a function of six parameters cap-
turing the cosmological and IGM dependence of Lyman-α clus-
tering (Pedersen et al. 2021). We show that this strategy enables
precise P3D predictions from nonlinear scales to arbitrarily large
(linear) scales even when training on a suite of simulations
with moderate size (Pedersen et al. 2021; Cabayol-Garcia et al.
2023). forestflow also allows for the prediction of any statis-
tic derived from P3D without requiring interpolation or extrapo-
lation. For instance, we can compute ξ3D by taking the Fourier
transform of P3D or derive P1D by integrating its perpendicular
modes

P1D(k‖) = (2π)−1
∫ ∞

0
dk⊥ k⊥ P3D(k‖, k⊥), (1)

where k‖ and k⊥ indicate parallel and perpendicular modes,
respectively.

The release of forestflow is quite timely for BAO and P1D
analyses of the ongoing Dark Energy Spectroscopic Instrument
survey (DESI; DESI Collaboration 2016), which will quadruple
the number of line-of-sights observed by first the Baryon Oscil-
lation Spectroscopic Survey (BOSS; Dawson et al. 2013) and
its extension (eBOSS; Dawson et al. 2016). DESI has already
proven the constraining power of Lyman-α studies by measur-
ing the isotropic BAO scale with '1% precision from the Data
Release 1 (DESI Collaboration 2024) and P1D at nine redshift
bins with a precision of a few percent from the Early Data
Release (Ravoux et al. 2023; Karaçaylı et al. 2024). In addi-
tion to being used for BAO and P1D studies, forestflow

1 Publicly available at https://github.com/igmhub/ForestFlow

has the potential to extend toward nonlinear scales the cur-
rent full-shape analyses of ξ3D (Cuceu et al. 2023; Gerardi et al.
2023) and P3D (Font-Ribera et al. 2018; de Belsunce et al. 2024;
Horowitz et al. 2025), and can be used to interpret alternative
three-dimensional statistics (Hui et al. 1999; Font-Ribera et al.
2018; Abdul Karim et al. 2024).

The structure of this paper is as follows: we describe the
strategy adopted by forestflow, the input data for the cNF,
and its architecture in Sects. 2, 3, and 4, respectively. Next, we
assess the performance of forestflow in Sect. 5 and high-
light some novel analyses enabled by this framework in Sect. 6.
Finally, we summarize the main findings and conclude in Sect. 7.
Throughout this paper, all statistics and distances are in comov-
ing units.

2. Strategy adopted by forestflow

In forestflow, we emulate the parameters of a physically
motivated parametric model for Lyman-α forest clustering as a
function of parameters that capture the influence of cosmology
and IGM physics on this observable. This section begins with
an overview of the physically motivated model, followed by an
introduction to the parameters used to characterize the depen-
dence of Lyman-α forest clustering on cosmology and IGM
physics.

2.1. Parametric model for P3D

We can express fluctuations in the Lyman-α forest flux as δF(s) =
F̄−1(s)F(s) − 1, where F = exp(−τ) and F̄ are the transmitted
flux fraction and its mean, respectively, τ is the optical depth to
Lyman-α absorption, and s is the redshift-space coordinate. On
linear scales, these fluctuations depend upon the matter field as
follows (e.g., McDonald 2003)

δF = bδ δ + bη η, (2)

where δ refers to matter density fluctuations, η =
−(a H)−1(∂vr/∂r) stands for the dimensionless line-of-sight
gradient of radial peculiar velocities, a is the cosmological
expansion factor, H is the Hubble expansion factor, vr is the
radial velocity, and r stands for the radial comoving coordinate.
The linear bias coefficients bδ and bη capture the response of δF
to large-scale fluctuations in the δ and η fields, respectively.

Following McDonald (2003), we decompose the three-
dimensional power spectrum of δF into three terms

P3D(k, µ) = (bδ + bη f µ2)2DNL(k, µ)Plin(k), (3)

where f = d log G/d log a is the logarithmic derivative of the
growth factor G, µ = k−1k‖ is the cosine of the angle between
the Fourier mode and the line of sight, (bδ + bη f µ2)2 accounts
for both linear biasing and large-scale redshift space distortions
(Kaiser 1987; McDonald et al. 2000), Plin is the linear matter
power spectrum2, and DNL is a physically motivated paramet-
ric correction accounting for the nonlinear growth of the den-
sity field, nonlinear peculiar velocities, thermal broadening, and
pressure.

The large-scale behavior of P3D is set by the bias coefficients
bδ and bη together with the linear power spectrum, and the lat-
ter can be computed using a Boltzmann solver (e.g., Lewis et al.
2000; Lesgourgues 2011). Therefore, the emulation of the two

2 This is the linear power spectrum of cold dark matter and baryons
even for cosmologies with massive neutrinos.
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Lyman-α linear biases enables predicting P3D on arbitrarily
large (linear) scales3. In contrast with direct emulation of power
spectrum modes, this approach only requires simulations large
enough for measuring the two Lyman-α linear biases precisely.

Predicting P3D on small scales is more challenging than on
large scales due to the variety of effects influencing this statistic
in the nonlinear regime (e.g., McDonald 2003). In this work, we
capture these small-scale effects using the physically motivated
Arinyo-i-Prats et al. (2015) parameterization

DNL = exp

(q1∆2 + q2∆4
) [

1 −
(

k
kv

)av

µbv

]
−

(
k
kp

)2
 , (4)

where ∆2(k) ≡ (2π2)−1k3Plin(k) is the dimensionless linear mat-
ter power spectrum and the free parameters kv and kp are in
Mpc−1 units throughout this work. The terms involving {q1, q2},
{kv, av, bv}, and {kp} account for nonlinear growth, peculiar
velocities and thermal broadening, and gas pressure, respec-
tively. The expression above does not account for a shot noise
term (e.g., Iršič & McQuinn 2018). While Givans et al. (2022)
successfully described P3D and P1D measurements down to
highly nonlinear scales using this formulation, it is possible that
the shot noise contribution was implicitly absorbed into their
fit through free parameters representing other effects. A more
detailed investigation of shot noise is deferred to future work.

In the top panel of Fig. 1, dotted lines show the ratio of mea-
surements from the central simulation at z = 3 and the lin-
ear power spectrum, while solid lines do so for the best-fitting
model to these measurements (Eqs. (3) and (4)) and the linear
power spectrum. See Sect. 3 for details about this simulation and
the fitting procedure. The dashed lines depict the results for the
best-fitting model when setting DNL = 1 after carrying out the
fit; in other words, the behavior of the best-fitting model on lin-
ear scales. We can readily see that nonlinear growth isotropically
increases the power with growing k, while peculiar velocities
and thermal broadening suppress the power of parallel modes
as k increases. On even smaller scales, pressure takes over and
causes an isotropic suppression. Nonlinear growth modifies the
perpendicular power relative to linear theory by 10% for scales
as large as k = 0.5 Mpc−1, indicating that small-scale corrections
are important for most of the scales sampled by our simulations.
Nevertheless, in Appendix A, we show that we can measure the
two Lyman-α linear biases with percent precision from these
simulations. Deviations from linear theory are less pronounced
down to smaller scales for modes with µ ' 0.5 because nonlin-
ear growth and the combination of peculiar velocities and ther-
mal broadening tend to cancel each other out. As we can see,
the parametric model achieves an average accuracy of 2% for
k > 0.5 Mpc−1, supporting the validity of Eq. (4) for capturing
small-scale deviations from linear theory.

On the largest scales, we find strong variations between con-
secutive k-bins for the same µ-wedge. Some of these oscillations
are driven by differences in the average value of µ between con-
secutive bins due to the limited number of modes entering each
bin on large scales. To ensure an accurate comparison between
simulation measurements and model predictions, we individu-
ally evaluate the P3D model for all the modes within each k − µ
bin from our simulation boxes. We then calculate the mean of
the resulting distribution and assign this mean value to the bin,
thereby mirroring the approach used to compute P3D measure-
ments from the simulations. This process is also important on

3 Aside from nonlinear effects affecting the position and damping of
BAO.
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Fig. 1. Accuracy of the P3D model (see Eqs. (3) and (4)) in reproduc-
ing measurements from the central simulation at z = 3. In the top
panel, dotted and solid lines show the ratio of simulation measurements
and model predictions relative to the linear power spectrum, respec-
tively. Dashed lines do so for the linear part of the best-fitting model
(DNL = 1). Line colors correspond to different µ wedges, and ver-
tical dashed lines mark the minimum scale used for computing the
best-fitting model, k = 5 Mpc−1. The bottom panel displays the rela-
tive difference between the best-fitting model and simulation measure-
ments. The overall accuracy of the model is 2% on scales in which
simulation measurements are not strongly affected by cosmic variance
(k > 0.5 Mpc−1; see text).

small scales, where the number of modes increases rapidly with
k. Throughout this work, we adopt this approach to make predic-
tions from the P3D model.

Using this approach to generate theoretical predictions, the
best-fitting model successfully captures most of the aforemen-
tioned large-scale oscillations. However, a fluctuation at k '
0.25 Mpc−1 in the 0 < µ < 0.25 wedge remains unaccounted for
by the model. The negligible differences between model predic-
tions and simulation measurements in the adjacent bins suggest
that this fluctuation is likely due to cosmic variance. We assess
the impact of this source of uncertainty on P3D in Appendix A,
finding that it can induce fluctuations of up to 10% on scales
k < 0.5 Mpc−1. As a result, cosmic variance limits our ability to
evaluate the model’s performance on the largest scales shown.
However, this does not necessarily reflect reduced model accu-
racy but rather highlights the limitations of using our simulations
for validating the model. Proper validation on large scales would
require either a larger simulation or multiple simulations with
different initial conditions.

2.2. Input and output parameters

In addition to the density and velocity fields, the Lyman-α forest
depends upon the ionization and thermal state of the IGM (e.g.,
McDonald 2003). Following Pedersen et al. (2021), we use six
parameters to describe the dependency of this observable with
cosmology and IGM physics:
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– Amplitude and slope of the linear matter power spectrum on
small scales. We define the amplitude (∆2

p) and slope (np)
as

∆2
p(z) = (2π2)−1k3Plin(kp, z), (5)

np(z) =
(
d log Plin/d log k

)
|k=kp , (6)

where we use kp = 0.7 Mpc−1 as the pivot scale because
it is at the center of the range of interest for DESI small-
scale studies. These parameters capture multiple physical
effects modifying the linear power spectrum on small scales
(see Pedersen et al. 2021, for a detailed discussion), includ-
ing cosmological parameters such as the amplitude (As)
and slope (ns) of the primordial power spectrum, the Hub-
ble parameter, and the matter density (ΩM), or ΛCDM
extensions such as curvature and massive neutrinos. The
advantage of using this parameterization rather than ΛCDM
parameters is twofold. First, it reduces the dimensionality
of the input to the cNF (see Sect. 4), which decreases the
number of simulations required for precise training. Sec-
ond, the resulting emulator has the potential for making
precise predictions for variations in cosmological param-
eters and ΛCDM extensions not considered in the train-
ing set (Pedersen et al. 2021, 2023; Cabayol-Garcia et al.
2023). Note that we do not consider cosmological param-
eters capturing changes in the growth rate or expan-
sion history because the Lyman-α forest probes cosmic
times during which the universe is practically Einstein de-
Sitter, and both vary very little with cosmology in this
regime.

– Mean transmitted flux fraction. The mean transmitted flux
fraction (F̄) depends on the intensity of the cosmic ioniz-
ing background and evolves strongly with redshift. One of
the advantages of using this parameter is that it encodes the
majority of the redshift dependence of the signal, serving as
a proxy for cosmic time.

– Amplitude and slope of the temperature-density relation.
The thermal state of the IGM can be approximated by a
power law on the densities probed by the Lyman-α forest
(Lukić et al. 2015): T0∆

γ−1
b , where ∆b is the baryon overden-

sity, T0 is the gas temperature at mean density, and γ − 1
is the slope of the relation. These parameters influence the
ionization of the IGM, which is captured by F̄, and the ther-
mal motion of gas particles, which causes Doppler broaden-
ing that suppresses the parallel power. Instead of using T0
as an emulator parameter, we follow Pedersen et al. (2021)
and use the thermal broadening scale in comoving units.
First, we express the thermal broadening in velocity units as
σ̃T = 9.1(T0[K]/104)1/2, and then we convert it to comoving
units, σT = σ̃T(1 + z)H−1.

– Pressure smoothing scale. Gas pressure supports baryons on
small scales, leading to a strong isotropic power suppres-
sion in this regime that depends upon the entire thermal
history of the gas (Gnedin & Hui 1998). We parameterize
this effect using the pressure smoothing scale in units of
comoving Mpc−1, kF (see Pedersen et al. 2021, for more
details).

In summary, our cNF predicts the eight free parameters of the
physically motivated model for Lyman-α clustering introduced
by Eqs. (3) and (4), y = {bδ, bη, q1, q2, kv, av, bv, kp}, as a
function of the aforementioned six parameters capturing the cos-
mological and IGM dependence of the Lyman-α forest, x =
{∆2

p, np, F̄, σT, γ, kF}.

3. Training and testing set

In this section, we describe how we generated the training and
testing data for the cNF described in Sect. 4. In Sect. 3.1,
we present a suite of cosmological hydrodynamical simulations
from which we generated mock Lyman-α forest measurements,
and we detail our approach for extracting P3D and P1D mea-
surements from these simulations in Sect. 3.2. In Sect. 3.3, we
compute the best-fitting parameters of the model introduced by
Eqs. (3) and (4) to measurements of these statistics, and we eval-
uate the performance of the fits in Sect. 3.4.

3.1. Simulations

We extracted Lyman-α forest simulated measurements from a
suite of simulations run with mp-gadget4 (Feng et al. 2018;
Bird et al. 2019), a massively scalable version of the cosmo-
logical structure formation code gadget-3 (last described in
Springel 2005). This suite was first presented and used in
Pedersen et al. (2021); we briefly describe it next. Each simula-
tion tracked the evolution of 7683 dark matter and baryon parti-
cles from z = 99 to z = 2 inside a box of L = 67.5 Mpc on a side,
producing as output 11 snapshots uniformly spaced in redshift
between z = 4.5 and 2. This configuration ensures convergence
for P1D measurements down to k‖ = 4 Mpc−1 (the smallest scale
used in this work) at z = 2 and less than 10% errors for this scale
at z = 4 (see Bolton et al. 2017, for more details). On the other
hand, this configuration may cause non-negligible biases for P3D
at high redshift (Lukić et al. 2015).

Two realizations were run for each combination of cos-
mological and astrophysical parameters using the “fixed-
and-paired” technique (Angulo & Pontzen 2016; Pontzen et al.
2016), which significantly reduces cosmic variance for multiple
observables, including the Lyman-α forest (Villaescusa-Navarro
et al. 2018; Anderson et al. 2019). The initial conditions were
generated using the following configuration of mp-genic
(Bird et al. 2020): initial displacements produced using the
Zel’dovich approximation and baryons and dark matter initial-
ized on an offset grid using species-specific transfer functions.
Some studies have suggested that this configuration might lead
to incorrect evolution of linear modes (Bird et al. 2020). How-
ever, in a recent study, Khan et al. (2024) showed that variations
in the specific setting of mp-genic initial conditions have a min-
imal impact on P1D measurements across the range of redshifts
and scales used in this work.

To increase computational efficiency, the simulations utilized
a simplified prescription for star formation that turns regions of
baryon overdensity ∆b > 1000 and temperature T < 105 K into
collisionless stars (e.g., Viel et al. 2004), implemented a spa-
tially uniform ultraviolet background (Haardt & Madau 2012),
and did not consider active galactic nuclei (AGN) feedback
(e.g., Chabanier et al. 2020). These approximations are justi-
fied because we focus on emulating the Lyman-α forest in
the absence of astrophysical contaminants like AGN feedback,
damped Lyman-alpha absorbers (DLAs), or metal absorbers,
and we will model these before comparing our predictions
with observational measurements (e.g., McDonald et al. 2005;
Palanque-Delabrouille et al. 2015, 2020).

In Sect. 4, we train a cNF using data from 30 fixed-and-
paired simulations from the previous suite, covering combi-
nations of cosmological and astrophysical parameters selected
via a Latin hypercube sampling method (McKay et al. 1979).

4 https://github.com/MP-Gadget/MP-Gadget/
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Hereafter, we refer to these as training simulations. The
Latin hypercube spans the parameters {∆2

p(z = 3), np(z =
3), zH, HA, HS}, where we use z = 3 because it is approxi-
mately at the center of the range of interest for DESI studies
(Ravoux et al. 2023; Karaçaylı et al. 2024), zH is the midpoint of
hydrogen reionization, and the last two parameters rescale the
total photoheating rate ε0 as ε = HA∆

HS
b ε0 (Oñorbe et al. 2017).

Cosmological parameters were generated within the ranges
∆2

p(z = 3) ∈ [0.25, 0.45], np(z = 3) ∈ [−2.35, −2.25] by explor-
ing values of the amplitude and slope of the primordial power
spectrum within the intervals As ∈ [1.35, 2.71] × 10−9 and ns ∈

[0.92, 1.02]. Any other ΛCDM parameter was held fixed to val-
ues approximately following Planck Collaboration VI (2020):
dimensionless Hubble parameter h = 0.67, physical cold dark
matter density Ωch2 = 0.12, and physical baryon density Ωbh2 =
0.022. As for the IGM parameters, these explored the ranges
zH ∈ [5.5, 15], HA ∈ [0.5, 1.5], and HS ∈ [0.5, 1.5]. All sim-
ulation pairs share the same set of initial Fourier phases, mak-
ing their P3D and P1D subject to the same large-scale noise
pattern.

We evaluated different aspects of the emulation strategy
using six fixed-and-paired simulations with cosmological and
astrophysical parameters not considered in the training sim-
ulations:

– The central simulation uses cosmological and astrophys-
ical parameters at the center of the training parameter
space: As = 2.01 × 10−9, ns = 0.97, zH = 10.5, HA = 1,
and HS = 1. We use this simulation for an out-of-sample
test to evaluate the performance of forestflow under opti-
mal conditions, recognizing that the accuracy of machine-
learning models generally declines near the boundaries of
the convex hull defined by the training set.

– The seed simulation uses the same parameters as the cen-
tral simulation while considering a different distribution of
initial Fourier phases. Given that all training simulations
use the same initial Fourier phases, seed is useful to evaluate
the impact of cosmic variance in the training set on forest-
flow predictions.

– The growth, neutrinos, and curved simulations adopt
the same values of ∆2

p(z = 3), np(z = 3), physical cold dark
matter and baryonic densities, and astrophysical parameters
as the central simulation. However, the growth simula-
tion uses 10% larger Hubble parameter (h = 0.74) and 18%
smaller matter density (ΩM = 0.259) while using the same
value of ΩMh2 as the training simulations, the neutrinos
simulation includes massive neutrinos (

∑
mν = 0.3 eV), and

the curved simulation considers an open universe (Ωk =
0.03). The neutrinos and curved simulations also modify
the value of the cosmological constant while holding fixed h
to compensate for the increase in the matter density and the
addition of curvature, respectively. We use the testing simu-
lations to evaluate the performance of the emulation strategy
for cosmologies not included in the training set.

– The reionisation simulation uses the same cosmological
parameters as the central simulation while implementing
a distinct helium ionization history relative to the central
and training simulations (Puchwein et al. 2019). The main
difference between the ionization histories of these simu-
lations is that the one implemented in the reionisation
simulation peaks at a later time than the others, leading
to a significantly different thermal history. The reionisa-
tion simulation therefore tests the performance of forest-
flow for thermal histories not considered in the training
simulations.

3.2. Simulating Lyman-α forest data

To extract Lyman-α forest measurements from each simulation,
we first selected one of the simulation axes as the line of sight
and displace the simulation particles from real to redshift space
along this axis. Then, we computed the transmitted flux frac-
tion along 7682 uniformly distributed line of sights along this
axis using FSFE5 (Bird 2017); these lines of sight are com-
monly known as skewers. Following Springel (2005), we com-
puted pressure forces using the density-entropy formulation of
smoothed particle hydrodynamics (SPH) with a cubic spline ker-
nel and 33 neighbors6. We set the resolution of the skewers to
0.05 Mpc, which is enough to resolve the thermal broadening
and pressure scales, and spaced these by 0.09 Mpc in the trans-
verse direction. We checked that P3D and P1D measurements
within the range of interest (see Sect. 3.3) do not vary by increas-
ing the line-of-sight resolution or the transverse sampling. We
repeated all the previous steps for the three simulation axes to
extract further cosmological information, as each simulation axis
samples the velocity field in a different direction. Finally, we
scaled the effective optical depth of the skewers to 0.90, 0.95,
1.05, and 1.10 times its original value, which is equivalent to
running simulations with different UV background photoioniza-
tion rates (see Lukić et al. 2015).

Using this data as input, we measured P3D by first com-
puting the three-dimensional Fourier transform of the skewers.
Then, we took the average of the square norm of all modes
within 20 logarithmically spaced bins in wavenumber k from
the fundamental mode of the box, kmin = 2πL−1 ' 0.09 Mpc−1,
to kmax = 40 Mpc−1 and 16 linearly spaced bins in the cosine
of the angle between Fourier modes and the line of sight from
µ = 0 to 1. We measured P1D by first computing the one-
dimensional Fourier transform of each skewer without applying
any binning, and then by taking the average of the square norm
of all these Fourier transforms. The impact of cosmic variance on
fixed-and-paired simulations is not straightforward (Maion et al.
2022), and thus we would ideally use multiple fixed-and-paired
simulations with different initial distributions of Fourier phases
to estimate the precision of P3D and P1D measurements from
our simulations. However, such simulations are not available,
and we instead relied on the comparison between two simula-
tions with same configuration but different initial conditions (see
Appendix A). We found that the impact of cosmic variance on
P3D and P1D measurements can be as large as 10 and 1% on
intermediate scales, respectively.

We measured P3D and P1D from the 30 training
and the six test simulations, ending up with 2 (opposite
Fourier phases)× 3 (simulation axes)× 11 (snapshots)× 5 (mean
flux rescalings) = 330 measurements of each of these statis-
tics per simulation. To reduce cosmic variance, we com-
puted the average of measurements from different axes and
phases of fixed-and-paired simulations, which decreased the
number of measurements per simulation to 55. The train-
ing and testing sets of forestflow are thus comprised
of 1650 and 330 Lyman-α power spectra measurements7,
respectively.

5 https://github.com/sbird/fake_spectra
6 This approach may lead to biases in flux statistics (Chabanier et al.
2023).
7 These are publicly available at https://github.com/
igmhub/LaCE

A187, page 5 of 18

https://github.com/sbird/fake_spectra
https://github.com/igmhub/LaCE
https://github.com/igmhub/LaCE


Chaves-Montero, J., et al.: A&A, 694, A187 (2025)

3.3. Fitting the parametric model

To generate training and testing data for our emulator, we com-
puted the best-fitting parameters of Eqs. (3) and (4) to measure-
ments from the simulations described in Sect. 3.1. We fitted the
model using P3D measurements from k = 0.09 to 5 Mpc−1 and
P1D measurements from k‖ = 0.09 to 4 Mpc−1. The size of our
simulation boxes determines the largest scales used, while the
smallest scales measured by DESI set the maximum wavenum-
bers (Ravoux et al. 2023; Karaçaylı et al. 2024). It is important
to note that the two Lyman-α linear biases determine the large-
scale behavior of P3D (see Eq. (3)), and thus forestflow could
make accurate predictions for P3D on arbitrarily large (linear)
scales as long as the Lyman-α linear biases are measured accu-
rately.

We computed the best-fitting value of model parameters
y = {bδ, bη, q1, q2, kv, av, bv, kp} to simulation measurements
by minimizing the pseudo-χ2:

χ2(y) =

M3D∑
i

w3D

[
Pdata

3D (ki, µi) − Pmodel
3D (ki, µi, y)

]2

+

M1D∑
i

w1D

[
Pdata

1D (k‖, i) − Pmodel
1D (k‖, i, y)

]2
, (7)

where M3D = 164 and M1D = 42 were the number of P3D and
P1D bins employed in the fit, respectively, the superscripts data
and model refer to simulation measurements and model predic-
tions, and w3D and w1D weighed the fit. We used the Nelder-
Mead algorithm implemented in the routine minimize of scipy
(Virtanen et al. 2020) to carry out the minimization8. The results
of the fits are publicly accessible9.

Ideally, we would have used the covariance of P3D and
P1D measurements to weigh the previous expression. However,
estimating this covariance requires multiple realizations of the
same simulation with different initial distributions of Fourier
phases, and we do not have these simulations available. Instead,
we disregarded correlations between P3D and P1D and weighed
these by w3D = N3D(k, µ)/(1 + µ2)2 and w1D = α(1 + k‖/k0)2,
where N3D is the number of modes in each k − µ bin and
k0 = 2 Mpc−1. The terms involving N3D, µ, and k0 attempt to
ensure an unbiased fit of P3D and P1D across the full range of
scales used. The parameter α = 8000 controls the relative weight
of P3D and P1D in the fit, and we set this value motivated by
the different impact of cosmic variance on these statistics (see
Appendix A).

We expect significant correlations between the best-fitting
value of the parameters to measurements from relatively small
simulation boxes. As shown by Arinyo-i-Prats et al. (2015),
these correlations are especially significant for the parame-
ters accounting for nonlinear growth of structure, q1 and q2.
Givans et al. (2022) advocated for setting q2 = 0 since this
parameter is not necessary for describing P3D at z = 2.8. How-
ever, we found non-zero values of this parameter indispensable
for describing P3D at redshifts below z = 2.5. This is not sur-
prising since the gravitational evolution of density perturbations
becomes increasingly more nonlinear as cosmic time progresses.

8 To ensure that this routine did not get stuck in a local minimum,
we checked that the likelihood is unimodal in all cases using the
Affine Invariant Markov chain Monte Carlo Ensemble sampler emcee
(Foreman-Mackey et al. 2013).
9 https://github.com/igmhub/ForestFlow
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Fig. 2. Accuracy of the parametric model (see Eqs. (3) and (4)) in repro-
ducing P3D and P1D measurements from all the training simulations.
Lines and shaded areas show the mean and standard deviation of the
relative difference between simulation measurements from the 1650
snapshots of the training simulations and best-fitting models to these,
respectively. The accuracy of the model in recovering P3D and P1D is
2.4 and 0.6%, respectively, on scales not strongly affected by cosmic
variance.

3.4. Accuracy of the parametric model

In the previous section, we computed the best-fitting param-
eters of the P3D model to measurements from the training
simulations. Two main sources of uncertainty can affect these
fits: model inaccuracies and cosmic variance. The first relates to
using a parametric model without enough flexibility to describe
Lyman-α clustering accurately, while the second has to do with
the limited size of the training simulations. The influence of
cosmic variance on the training set is amplified because all the
training simulations use the same initial distribution of Fourier
phases, meaning all simulations are subject to the same large-
scale noise. We study this source of uncertainty in Appendix A,
where we compared the best-fitting models to the central and
seed simulations, whose only difference is in their initial distri-
bution of Fourier phases. We proceed to study model inaccura-
cies next.

In Fig. 2, we show the performance of the parametric model
in reproducing P3D and P1D measurements from the 1650 snap-
shots of the training simulations. As discussed in Sect. 2.1,
cosmic variance limits our ability to evaluate the accuracy of the
model for P3D on scales k < 0.5 Mpc−1; therefore, we quote
the model accuracy from k = 0.5 Mpc−1 down to the small-
est scale used in the fit, k = 5 Mpc−1. In contrast, since cos-
mic variance has a much smaller impact on P1D, we evaluate the
model performance for this statistic using all scales considered
in the fit (0.09 < k‖ [Mpc−1] < 4). We adopt the same approach
when evaluating the performance of forestflow in Sect. 5.
Under these considerations, the overall accuracy of the paramet-
ric model is 2.4 and 0.6% for P3D and P1D, respectively. Given
that we estimate the accuracy of the parametric model using the
training simulations, the previous numbers account for both
the limited flexibility of such model and cosmic variance. As
discussed in Appendix A, the impact of cosmic variance on mea-
surements of P3D and P1D from these simulations is 1.3 and
0.5%, respectively. If we assume that cosmic variance and errors
coming from the limited flexibility of the parametric model are
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uncorrelated and add in quadrature, the second are responsible
for 2.0 and 0.3% errors on P3D and P1D, respectively.

4. Emulator

In this section, we use a cNF to predict the two Lyman-α lin-
ear biases and six parameters describing small-scale deviations
of P3D from linear theory as a function of cosmology and IGM
physics. We detail the architecture and implementation of this
emulator in Sects. 4.1 and 4.2, respectively.

4.1. Conditional normalizing flows

Normalizing flows (NFs; Jimenez Rezende & Mohamed 2015)
are a class of machine-learning generative models designed to
predict complex distributions by applying a sequence of bijec-
tive mappings to simple base distributions. A natural extension
to this framework is conditional NFs (cNFs; Winkler et al. 2019;
Papamakarios et al. 2019), a type of NFs that condition the map-
ping between the base and target distributions on a series of input
variables. Given an input x ∈ X and target y ∈ Y , cNFs predict
the conditional distribution pY |X(y|x) by applying a parametric,
bijective mapping fφ : Y × X → Z to a base distribution pZ(z) as
follows

pY |X(y|x) = pZ( fφ(y, x)|x)

∣∣∣∣∣∣∂ fφ(y, x)
∂y

∣∣∣∣∣∣ , (8)

where φ are the parameters of the mapping, while the last term
of the previous equation is the Jacobian determinant of the map-
ping. In our cNF, the input is given by the parameters capturing
the dependence of the Lyman-α forest on cosmology and IGM
physics, x = {∆2

p, np, F̄, σT, γ, kF}, the target by the parame-
ters of the P3D model, y = {bδ, bη, q1, q2, kv, av, bv, kp}, and
the base distribution is an eight-dimensional Normal distribu-
tion N8(0, 1), where the dimension is determined by the number
of P3D model parameters.

Once trained, cNFs are a generative process from x to y. In
our implementation, we start by randomly sampling from the
base distribution, and then we pass this realization through a
sequence of mappings conditioned on a particular combination
of cosmology and IGM parameters, ỹ = f −1

φ (pZ(z), x), ending
up with a prediction for the value of the P3D model parame-
ters. Repeating this process multiple times, the emulator yields
a distribution of P3D parameters pỸ |X that, for a sufficiently large
number of samples, approaches the target distribution pY |X . The
breadth of this distribution captures uncertainties arising from
the limited size of the training set. Finally, outside the cNF, we
use each combination of P3D parameters to evaluate Eqs. (3) and
(1), obtaining predictions and uncertainties for P3D and P1D.

The main challenge when using cNFs is finding the map-
ping between the target and the base distribution, typically done
using an N-layer neural network with bijective layers. This pro-
cess runs in reverse relative to the generating process: we start
by applying the mapping fφ to the target data y conditioned on
the input x, yielding z. Then, we optimize the model parameters
by minimizing the loss function

L =
1
2

∑
z2 − log

∣∣∣∣∣∣δ fφ(y, x)
δy

∣∣∣∣∣∣ . (9)

We carried out this optimization process using stochastic gradi-
ent descent applied to minibatches, a methodology commonly
employed for training neural networks.

4.2. Implementation

Neural Autoregressive Flows (Huang et al. 2018) use a series of
invertible univariate operations to build a bijective transforma-
tion between a conditional distribution and a base distribution. In
forestflow, we created a bijective mapping between the best-
fitting parameters of the P3D model and an eight-dimensional
Normal distribution by applying NACB = 12 consecutive Affine-
Coupling Block (ACB; Dinh et al. 2016) conditioned on cos-
mology and IGM physics. The transformation goes from the
best-fitting parameters of the P3D model to the base distribu-
tion when training the model, and in the opposite direction when
evaluating it.

Each ACB conducts a series of operations gi,φ̃i
on its input

data wi, with i going from 1 to NACB and φ̃i standing for the
parameters of the transformation. First, it splits the input data
into two subsamples with approximately the same number of ele-
ments, w′i and w′′i. Then, it applies an affine transformation to
the first subsample w′i

T (w′i) = αi w′i + βi, (10)

where αi and βi are neural networks with a single hidden layer
of 128 neuron units. Third, the ACB merges the output from the
affine transformation and the unchanged subsample, and then
it applies a permutation layer to randomly rearrange these ele-
ments, obtaining w̃i. Fourth, the ACB applies an affine transfor-
mation to this sample, T̃ (w̃i). The first and second affine transfor-
mations involve a subset of the training set and the entire training
set, respectively, enabling the model to capture local and global
features.

In Fig. 3, we show the architecture of the cNF. The blue
arrow indicates the training direction, while the green arrow
depicts the emulation direction. In the training direction, the
input to the first ACB, u1 = w1, is a 1650-dimensional array
composed of 14-dimensional vectors, where 1650 is the number
of simulation snapshots in the training set. Each vector includes
the eight best-fitting P3D model parameters to each snapshot and
the six parameters describing the cosmology and IGM physics
of this snapshot. The input to the i ACB, ui, is a 1650-array con-
taining 14-dimensional vectors with the output of the i − 1 ACB
and, once again, the six parameters describing the cosmology
and IGM physics of each snapshot. Each ACB applies a transfor-
mation fi,φi = gi,φ̃i

, and the consecutive application of all ACBs
results in the mapping between the target and the base distribu-
tions z = fφ(y, x), where fφ =

∏NACB
i=1 fi,φi .

In the emulation direction, the input to the first ACB, v1 =
w1, is a 14-dimensional vector containing random draws from
an eight-dimensional Normal distribution and the six parameters
describing the cosmology and IGM physics for which we want to
obtain predictions. As in the training direction, the input to each
subsequent ACB relies on the output from the previous ACB,
each conditioned on cosmology and IGM physics. The ACBs
apply the transformations f −1

i,φi
= gi,φ̃i

, which are the inverse
of the corresponding transformations in the training direction,
fi,φi . The cNF makes predictions for P3D model parameters by
applying the composition of the inverse of all ACBs to random
samples from the base distribution, ỹ = f −1

φ (pZ(z), x), where
f −1
φ =

∏NACB
i=1 f −1

i,φi
.

We implemented the emulator within the FreIA framework
(Ardizzone et al. 2018-2022), which uses PyTorch (Ansel et al.
2024) in the backend. We trained it by minimizing Eq. (9) using
an Adam optimizer (Kingma & Ba 2014) for 300 epochs with an
initial learning rate of 10−3. We used the Optuna framework
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Fig. 3. Architecture of the Lyman-α forest clustering emulator. The blue arrow indicates the training direction, where the cNF optimizes a bijective
mapping between the best-fitting parameters of the P3D model to measurements from the training simulations and an eight-dimensional Normal
distribution. The mapping is conditioned on cosmology and IGM physics, and performed using 12 consecutive affine coupling blocks. The green
arrow denotes the emulation direction, where the cNF applies the inverse of the mapping to random samples from the base distribution to predict
the value of the P3D model parameters. Outside the cNF, forestflow introduces these parameters in Eq. (3) and (1) to obtain predictions for P3D
and P1D, respectively.

(Akiba et al. 2019) to select the number of ACBs and epochs,
as well as the value of the learning rate. First, Optuna trains
our cNF for a particular combination of these hyperparameters.
Then, it computes the average value of Eq. (7) for all simulations
in the training set. After that, depending on the goodness of the
fit to P3D and P1D measurements, Optuna selects a new value of
the hyperparameters. We iterated with Optuna 50 times through
a hyperparameter grid, selecting the hyperparameters that yield
the highest accuracy. We checked that the performance of the
cNF depended weakly on small variations in the value of the
hyperparameters.

5. Performance of forestflow

In Sect. 5.1, we analyze the performance of forestflow across
the parameter space of the training set. Then, in Sect. 5.2, we
test its accuracy using simulations with cosmologies and IGM
models that are not part of the training set. All performance
evaluations are conducted using the simulations described in
Sect. 3.1, which were run using the same code and resolution.
Before employing forestflow for cosmological inference, it
will be crucial to validate it against large, high-resolution sim-
ulations produced with alternative codes. We defer this task to
future work.

5.1. Cosmologies and IGM histories in the training set

In this section, we evaluate the performance of forestflow in
recovering the two Lyman-α linear biases, which determine the
behavior of P3D on linear scales, as well as P3D and P1D mea-
surements from simulations on the intervals 0.5 < k [Mpc−1] < 5
and 0.09 < k‖ [Mpc−1] < 4, respectively. These are the ranges
of scales used when fitting the parametric model in Sect. 3 that
are not strongly affected by cosmic variance (see Sect. 2.1). We
begin by assessing the accuracy of forestflow at the center of
the training set, where machine-learning methods typically per-
form best, and then extend our evaluation across the entire input
parameter space.

In Fig. 4, we compare measurements of P3D and P1D from
the central simulation at z = 3 with forestflow predictions.
Dotted lines show simulation measurements, while solid lines
and shaded areas display the average and 68% credible inter-
val of forestflow predictions, respectively. We characterize
the accuracy of the credible intervals in Appendix B. As we can
see, forestflow captures the amplitude and scale-dependence
of P3D and P1D precisely. In Fig. 5, we present the relative
difference between P3D and P1D measurements from the cen-
tral simulation and forestflow predictions as a function of
redshift. The model’s accuracy remains consistent for redshifts
above z = 2 but shows a slight decline at this redshift. This is
likely because z = 2 is the lowest redshift included in the train-
ing set and is therefore near the boundary of the convex hull
defined by the training data.

To better characterize the performance of forestflow, we
compute the average accuracy of forestflow in recovering
measurements from central across redshift. We find that it is
1.2 and 0.3% for bδ and bη, respectively, which translates into
1.1 and 1.2% for perpendicular and parallel P3D modes on lin-
ear scales, and 2.6 and 0.8% for P3D and P1D. Note that cos-
mic variance hinders our ability to test the performance of the
model; however, this does not necessarily indicate a decrease in
the model’s accuracy for P3D on the largest scales sampled by
our simulation.

We expect the efficiency of forestflow to decrease away
from the center of the input space. We could assess its per-
formance across the parameter space using the training simu-
lations; however, the cNF has been optimized for these points,
which introduces the risk of overfitting. Overfitting could result
in high precision for these specific points of the parameter space
but not for others nearby. As a result, we would ideally eval-
uate the performance of forestflow using multiple test sim-
ulations covering the entire parameter space, but such simula-
tions are unavailable. Instead, we conduct leave-one-out tests,
which are widely used to assess the performance of an emu-
lator when the number of training points is insufficient for
out-of-sample tests (e.g., Hastie et al. 2001). In a leave-one-out
test, we optimize a cNF after removing a subsample from the
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Fig. 4. Accuracy of forestflow in recovering P3D and P1D measure-
ments from the central simulation at z = 3. Dotted lines show mea-
surements from simulations, solid lines and shaded areas display the
average and 68% credible interval of forestflow predictions, respec-
tively, and vertical dashed lines indicate the minimum scales considered
for computing the training data for the cNF. The overall performance of
forestflow in recovering P3D is 2.0% on scales not strongly affected
by cosmic variance and 0.6% for P1D.

training set; for example, all measurements from one of the
training simulations. We then check the accuracy of forest-
flow for the new cNF using the subsample held back. The
rationale is that the new emulator should closely approximate
the original emulator everywhere in the parameter space except
near the excluded simulation, and more importantly, there is no
risk of overfitting. By repeating this process for other subsam-
ples, we can estimate the performance of forestflow across
the parameter space. Since each cNF is trained without using
the entire dataset, leave-one-out tests provide a lower bound
on forestflow performance. Additionally, leave-one-out tests
may require extrapolating the predictions from the cNF, and it is
widely known that machine-learning methods do not extrapolate
well.

In the top panels of Fig. 6, lines and shaded areas display the
average and standard deviation of 30 leave-simulation-out tests.
Each test requires optimizing a cNF with 29 distinct training
simulations, and then using the remaining simulation as the val-
idation. Each panel shows the results for a different redshift, and
we check that the results are similar for redshifts not shown.
As we can see, the large-scale noise is similar for all training
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Fig. 5. Accuracy of forestflow in recovering P3D and P1D measure-
ments from the central simulation as a function of redshift. The upper
four panels show the results for P3D across different µ bins, while the
bottom panel displays the results for P1D. Each color represents a dif-
ferent redshift. The model’s accuracy remains consistent for redshifts
above z = 2 but exhibits a slight decline at this redshift.

simulations; this is because they use the same initial distribution
of Fourier phases. The overall performance of forestflow in
recovering bδ and bη is 1.0 and 3.1%, respectively, which trans-
lates into 2.0 and 2.9% for perpendicular and parallel P3D modes
on linear scales, and 3.4 and 1.8% for P3D and P1D.

In Table 1, we gather the accuracy of forestflow at the
center and across the parameter space, as well as the expected
level of uncertainties due to cosmic variance and the limited
flexibility of the P3D model. Due to the limited size of our sim-
ulations, the maximum levels of accuracy we can test for P3D
and P1D are 1.3 and 0.5% (see Appendix A), respectively. These
levels would decrease by evaluating the accuracy of forest-
flow using bigger simulations with the same resolution. On the
other hand, the combined impact of impact of cosmic variance
on the training data and the limited flexibility of the P3D model
are 2.4 and 0.6% for P3D and P1D, respectively, which is 1.1 and
0.1% worse than the minimum accuracy we can test for these
statistics. At the center of the parameter space, the accuracy of
forestflow for P3D and P1D is only 0.2% worse than the pre-
vious levels, letting us conclude that the primary factors limiting
the performance of forestflow at the center of the parameter
space are the size of the training simulations and model inaccu-
racies.

The efficiency of forestflow across the parameter space
is 1.2 and 1.0% worse than at the center for P3D and P1D,
respectively. Consequently, its accuracy would likely improve by
increasing the number of training simulations. However, leave-
one-out tests significantly underestimate the performance of an
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Fig. 6. Accuracy of forestflow across the input parameter space estimated via leave-simulation-out (top panels) and leave-redshift-out tests
(bottom panels). Top panels. Each leave-simulation-out test involves training one independent emulator with measurements from 29 distinct
simulations, and then using the measurements from the remaining simulation as the validation set. Lines and shaded areas show the average and
standard deviation of 30 leave-simulation-out tests, and each panel shows the results for a different redshift. Bottom panels. Leave-redshift-out
tests require optimizing one emulator with all measurements but the ones at a particular redshift, and then using measurements from this redshift
as validation. Each panel shows the results of a different test.

emulator at the edges of the training set, especially for a small
number of simulations, because it often requires extrapolating
the emulator’s predictions. We can thus conclude that the quality
of the training data, the accuracy of the model, and the number of
training simulations have a similar impact on the performance of
forestflow. Given that leave-simulation-out tests tend to pro-
vide a lower performance bound, we conclude that the overall
accuracy of forestflow in predicting P3D from linear scales
to k = 5 Mpc−1 is approximately 3%, and '1.5% for P1D down
to k‖ = 4 Mpc−1.

As discussed in Sect. 2.2, forestflow does not use as input
“traditional” cosmological parameters such as Ωm, As, or H0.
Instead, it uses a set of parameters measured from the outputs

of individual simulation snapshots. This strategy enables train-
ing forestflow without specifying the input redshift and mak-
ing predictions for redshifts not present in the training set. To
test this assumption, we carry out two leave-redshift-out tests.
The first involves optimizing one emulator with all training
measurements but the ones at z = 2.5, and then validating it
with data from this redshift. For the second, we follow the same
approach but using measurements at z = 3.5. We display the
results of these tests in the bottom panels of Fig. 6. The per-
formance of forestflow is similar for leave-redshift-out and
leave-simulation-out tests, validating the approach mentioned
above. We find similar results for leave-redshift-out tests at other
redshifts.
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Table 1. Percentage impact of different sources of uncertainty on
forestflow predictions and overall accuracy.

Type P3D P1D bδ bη Plin
3D,⊥ Plin

3D,‖

C. var. fit (a) 0.8 0.1 0.6 1.8 1.2 1.8
C. var. data (b) 1.3 0.5 – – – –
C. var. & fit (c) 2.4 0.6 – – – –
Emu. center (d) 2.6 0.8 1.2 0.3 1.1 1.2
Emu. overall (e) 3.4 1.8 1.0 3.1 2.0 2.9

Notes. The second and third columns show the results for P3D and P1D
over the intervals 0.5 < k [Mpc−1] < 5 and 0.09 < k‖ [Mpc−1] <
4 intervals, respectively, while the last two columns do so for per-
pendicular and parallel P3D linear modes. (a)Impact of cosmic vari-
ance on the best-fitting P3D model to simulation measurements (see
Appendix A). (b)Impact of cosmic variance on simulation measure-
ments (see Appendix A). (c)Joint impact of cosmic variance and the
limited flexibility of the P3D model (see Sect. 3.4). (d)Performance of
forestflow at the center of the parameter space, estimated using
the central simulation (see Sect. 5.1). (e)Accuracy of forestflow
across the parameter space, estimated via leave-simulation-out tests (see
Sect. 5.1).

5.2. Other cosmologies and IGM histories

In Fig. 7, we examine the accuracy of forestflow in reproduc-
ing P3D and P1D measurements from simulations not included in
the training set. Lines indicate the redshift average of the relative
difference between model predictions and simulation measure-
ments. The first two rows show the results for the central and
seed simulations, whose only difference is their initial distribu-
tion of phases. Consequently, the predictions of forestflow
are the same for the two simulations. As we can see, these sim-
ulations present a different large-scale pattern of fluctuations,
signaling that are caused by cosmic variance. Once we ignore
these, we find that the performance of forestflow is practi-
cally the same for the two simulations. We can thus conclude that
forestflow predictions are largely insensitive to the impact of
cosmic variance on the training set.

In the third, fourth, and fifth rows of Fig. 7, we use the
growth, neutrinos, and curved simulations to evaluate the
accuracy of forestflow for three different scenarios not con-
templated in the training set: different growth history, mas-
sive neutrinos, and curvature. As we can see, the performance
of forestflow for all these simulations is approximately the
same as for the central simulation. These results support that
using the small-scale amplitude and slope of the linear power
spectrum to capture cosmological information enables setting
precise constraints on growth histories and ΛCDM extensions
not included in the training set (see also Pedersen et al. 2021,
2023; Cabayol-Garcia et al. 2023).

In the last row of Fig. 7, we examine the accuracy of forest-
flow for the reionisation simulation, which employs a He ii
reionization history significantly different from those used by the
training simulations. The performance of forestflow for
this and the central simulation is similar, which is notewor-
thy given that the performance of P1D emulators for the reion-
isation simulation is significantly worse than for the central
simulation (Cabayol-Garcia et al. 2023). The outstanding per-
formance of forestflow is likely because the relationship
between IGM physics and the parameters of the P3D model is
more straightforward than with P1D variations.

6. Discussion

Cosmological analyses of the Lyman-α forest come in two fla-
vors: one-dimensional studies focused on small, nonlinear scales
and three-dimensional analyses of large, linear scales. With
forestflow, we can now consistently model Lyman-α cor-
relations from nonlinear to linear scales, enabling a variety of
promising analyses that we discuss next.

6.1. Connecting large-scale biases with small-scale physics

Small-scale Lyman-α analyses use emulators to predict
P1D as a function of cosmology and IGM physics (e.g.,
Cabayol-Garcia et al. 2023), while large-scale analyses use lin-
ear or perturbation theory models to predict ξ3D together with
Lyman-α linear bias parameters that need to be marginal-
ized over. forestflow provides a relationship between IGM
physics and linear biases, enabling the use of P1D studies to
inform three-dimensional analyses and vice versa.

We could use forestflow to set constraints on bδ and
bη by fitting P1D measurements, and then use these constraints
as priors in three-dimensional studies. As a result, we would
break degeneracies between Lyman-α linear bias parameters
and cosmology, allowing us to measure the amplitude of lin-
ear density and velocity fluctuations, σ8(z) and fσ8(z), rather
than bδσ8 and bη fσ8 like in traditional Lyman-α forest analy-
ses. To illustrate this application, we proceed to compare mea-
surements of bδ and β ≡ b−1

δ bη f from BAO analyses with
forestflow predictions for these parameters based on small-
scale P1D analyses. The analysis of BAO in the Lyman-α forest
from the first data release of DESI yields bδ = −0.108 ± 0.005
and β = 1.74 ± 0.09 at z = 2.33 (DESI Collaboration 2024).
On the other hand, forestflow predicts bδ = −0.118 and
β = 1.57 at z = 2.33 for a Planck cosmology when using as input
the best-fitting constraints on IGM parameters from Table 4 of
Walther et al. (2019), which were derived from high-resolution
P1D measurements. The constraints on IGM parameters were
derived using a P1D emulator trained on a suite of simulations
with the same input cosmology and possibly slightly different
definitions of IGM parameters relative to those used in this work.
Nonetheless, forestflow predictions and DESI measurements
agree at the two sigma level, encouraging this new type of
study.

In the left panels of Fig. 8, we display forestflow pre-
dictions for the response of the Lyman-α linear biases and β
to variations in cosmology and IGM physics. The response of
bδ to these changes is strong and has a different redshift depen-
dence for cosmology and IGM parameters; therefore, we could
use forestflow to analyze P3D measurements from different
redshifts to further break degeneracies between bδ and σ8. On
the other hand, the response of bη to these changes is weak,
and it is thus challenging to use this approach to break degen-
eracies between bη and fσ8. Note that the response of the
Lyman-α linear biases and β to As variations broadly agrees
with measurements from simulations run while only varying σ8
(Arinyo-i-Prats et al. 2015).

Similarly, we could use measurements of linear bias param-
eters from three-dimensional analyses (du Mas des Bourboux
et al. 2020; DESI Collaboration 2024) to make predictions for
IGM parameters, which could be used in P1D studies to break
degeneracies between cosmology and IGM physics. In the right
panels of Fig. 8, we display forestflow predictions for the
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Fig. 7. Performance of forestflow in recovering P3D and P1D for test simulations not included in the training set. Lines and shaded areas display
the average and standard deviation of the results for 11 snapshots between z = 2 and 4.5, respectively. From top to bottom, the rows show the results
for the central, seed, growth, neutrinos, curved, and reionisation simulations, where the central and seed simulations are at the
center of the input parameter space and employ the same and different initial distribution of Fourier phases as the training simulations, respectively,
the growth and reionisation simulations use a different growth and reionization history relative to those used by the training simulations,
and the neutrinos and curved simulations consider massive neutrinos and curvature. The efficiency of forestflow is approximately the same
for all simulations.

response of P3D and P1D to variations in cosmology and IGM
physics. As we can see, the response of P1D to As and F̄ varia-
tions is largely scale-independent down to k‖ = 1 Mpc−1 where
many other effects are at play, and thus these two parameters are
largely degenerated. On the other hand, this is not the case for
P3D; consequently, we could use information from P3D analy-
ses to break degeneracies in P1D studies. Note that the response
of P3D and P1D to As, F̄, and σT variations broadly agrees with
measurements from simulations run varying only one of these
parameters at a time (McDonald 2003; McDonald et al. 2005).

We also observe that P3D and P1D respond significantly
to variations in ΩMh2, suggesting that the Lyman-α cluster-
ing is highly sensitive to the expansion and growth history.
However, we find that variations in As and ns can absorb the
changes in P3D and P1D to the 2% level, and completely do
so for P3D at the pivot scale of the cosmological parame-
ters of forestflow, kp = 0.7 Mpc−1. Furthermore, Planck
measured ΩMh2 with 0.8% precision Planck Collaboration VI
(2020), and As and ns absorb 1% variations in ΩMh2 to the
'0.4% level. This result supports the approach of not consid-
ering any cosmological parameter related to variations in the
expansion of growth history as input for forestflow (see also
Sect. 5.2).

6.2. Alcock-Paczyński on mildly nonlinear scales

Thanks to the increasing precision of galaxy surveys, there is
a growing interest in extracting cosmological information from
increasingly smaller scales in three-dimensional analyses. An
avenue to do so is to analyze anisotropies in the correlation func-
tion Alcock & Paczynski (AP test; 1979), first proposed in the
context of the Lyman-α forest by McDonald & Miralda-Escudé
(1999) and Hui et al. (1999). Recently, Cuceu et al. (2023) fol-
lowed this approach to analyze Lyman-α forest measurements
from the Sloan Digital Sky Survey (SDSS) data release 16
(DR16; Ahumada et al. 2020), yielding constraints on some cos-
mological parameters a factor of two tighter than those from
BAO-only analyses.

This study modeled three-dimensional correlations using lin-
ear theory, which restricted the range of scales analyzed to
those larger than 25 h−1 Mpc. We could significantly extend the
range of scales used in this type of analysis by modeling three-
dimensional correlations using forestflow. As a result, the
constraining power of AP analyses would be much larger. Fur-
thermore, we could use forestflow to extract information
from P1D analyses to reduce degeneracies between cosmology
and the parameters describing ξ3D (see Sect. 6.1).
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Fig. 8. Response of Lyman-α clustering to variations in cosmology and IGM physics according to forestflow. The top, middle, and bottom
panels of the left column show the results for β, bδ, and bη, respectively, while those of the right column do so for the perpendicular modes of P3D,
the parallel modes of P3D, and P1D. Blue, orange, and red lines show the response of the previous quantities to a 5% increase in As, ΩMh2, and σT,
respectively, while green lines do so for a 1% increase in F̄.

6.3. Extending 3D analyses to the smallest scales

The ultimate goal of forestflow is to perform a joint anal-
ysis of one- and three-dimensional measurements from small
to large scales. An interesting approach to do so is to measure
the Lyman-α forest cross-spectrum (P×; e.g., Hui et al. 1999;
Font-Ribera et al. 2018), which captures the correlation between
one-dimensional Fourier modes from two neighboring quasars
separated by a transverse separation (r⊥). We can model this
statistic by taking the inverse Fourier transform of P3D only
along the perpendicular directions

P×(k‖, r⊥) ≡
1

(2π)2

∫
dk⊥ ei k⊥·r⊥ P3D(k‖, k⊥)

=
1

2π

∫ ∞

0
dk⊥ k⊥ J0(k⊥r⊥) P3D(k‖, k⊥). (11)

Comparing this equation with Eq. (1), it becomes clear that P1D
is a special case of P×, corresponding to the limit where the
transverse separation is zero.

In Sect. 3.3, we optimize the P3D model to describe measure-
ments of P3D and P1D from the training simulations. Then, in
Sect. 4, we use the distribution of best-fitting parameters as the

training set for forestflow, which predicts the value of P3D
model parameters as a function of cosmology and IGM physics.
Even though neither the best-fitting model nor forestflow use
P× for their optimization, we can make predictions of P× for the
two. To do so, we first estimate P3D using the value of the model
parameters using Eq. (3), and then we integrate it using Eq. (11).
We carry out the integration using the fast Hankel transform
algorithm FFTlog (Hamilton 2000) implemented in the hankl
package (Karamanis & Beutler 2021).

We use P× measurements from the simulations described
in Sect. 3.1 to evaluate the accuracy of forestflow for this
statistic. We first define four bins in r⊥, the transverse separa-
tion between skewers in configuration space, with edges 0.13,
0.32, 0.80, 2, and 6 Mpc. Then, we measure P× using all pairs of
skewers with r⊥ separation within the previous bins

P×(r⊥, k‖) =

〈
<

[
δ̃i(k‖)δ̃j

∗(k‖)
]〉

(12)

where δ̃i and δ̃∗j stand for the Fourier transform of a skewer i and
the complex conjugate of its partner j, respectively, the aver-
age 〈〉 includes all possible pairs in the bin without repetition
or permutation, and < indicates that we only use the real part
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Fig. 9. Accuracy of the parametric model and forestflow in describ-
ing P× measurements from the central simulation at z = 3. Dots show
simulation measurements, dashed lines depict predictions from the best-
fitting parametric model to P3D and P1D measurements, and solid lines
and shaded areas display the average and 68% credible interval of
forestflow predictions. The color of the lines indicates the results for
different bins in transverse separation r⊥. The middle panel shows the
residual between simulation measurements and the best-fitting paramet-
ric model, while the bottom panel displays the residual between predic-
tions from the parametric model and forestflow. The performance
of forestflow in reproducing simulation measurements is similar to
that of the best-fitting model.

of the expression between brackets because the average of the
imaginary part is zero. The r⊥ on the left-hand side denotes the
effective center of the bin, accounting for the skewed distribu-
tion of r⊥ within each bin: the number of skewers separated by a
small distance dr⊥ is proportional to r⊥, and therefore the effec-
tive center is not at the halfway point. To compute P× at the
effective center, we perform the integration using ten sub-bins
within each r⊥ bin and calculate the average of these weighed by
r⊥.

In Fig. 9, we study the performance of forestflow in
reproducing P× measurements from the central simulation at
z = 3. Dots display simulation measurements, dashed lines the
best-fitting model to P3D and P1D measurements from this sim-
ulation, and the solid lines forestflow predictions. As we can
see, P× decreases as the r⊥ separation increases; this is because
more distant sightlines are sampling increasingly uncorrelated
regions. In the middle panel, we examine the accuracy of the
best-fitting model in describing simulation measurements, find-
ing that it is better than 10% throughout all the scales shown. The
performance of the model improves for smaller r⊥ separations.
This is likely because the fit’s likelihood function (Eq. (7)) con-
siders P1D, which is equivalent to P× at r⊥ = 0 separation, but
not P×. The bottom panel illustrates the performance of forest-
flow relative to the best-fitting model, providing an approx-
imate assessment of its ability to reproduce the training data.
forestflow achieves an accuracy better than 5.

Future studies could use forestflow for extracting con-
straints on cosmology and IGM physics from the analysis of P×
measurements (e.g., Abdul Karim et al. 2024). Nevertheless, as
with P1D, these analyses would also require modeling multiple
systematics affecting Lyman-α measurements such as damped
Lyman-α systems, metal line contamination, and AGN feedback.

7. Conclusions

We present forestflow, a novel framework for predicting
Lyman-α clustering from linear and nonlinear scales as a func-
tion of cosmology and IGM physics. forestflow employs
conditional normalizing flows to emulate the eight parameters
of a physically motivated model for Lyman-α clustering: the two
linear Lyman-α biases (bδ and bη) and six parameters that cap-
ture small-scale deviations of the three-dimensional flux power
spectrum (P3D) from linear theory. By combining this model
with a Boltzmann solver, forestflow predicts P3D and any
derived statistics, including the two-point correlation function
(ξ3D, the primary statistic for large-scale analyses), the one-
dimensional Lyman-α flux power spectrum (P1D, central to
small-scale studies), and the cross-spectrum (P×, a promising
tool for full-scale analyses).

We trained the emulator using the best-fitting parameters of
the physically motivated model to measurements from a suite
of 30 fixed-and-paired cosmological hydrodynamical simula-
tions spanning 11 redshifts equally spaced between z = 2 and
4.5 (Pedersen et al. 2021). Despite the moderate size of these
simulations, forestflow achieves an accuracy of 3% for P3D
from linear scales to k = 5 Mpc−1 and 1.5% for P1D down
to k‖ = 4 Mpc−1. forestflow uncertainties arise from three
comparable sources: the size of the training simulations, their
number, and the limited flexibility of the physically motivated
model. However, we only evaluate the accuracy of forestflow
using simulations from our suite, and its performance may vary
for higher-resolution simulations or those generated with other
codes.
forestflow demonstrates comparable performance for

two extensions to the ΛCDM model – massive neutrinos and
curvature – and ionization histories not included in the train-
ing set. This generalization is made possible by emulating the
parameters of the physically motivated model as a function of
the small-scale amplitude and slope of the linear power spec-
trum, the mean transmitted flux fraction, the amplitude and slope
of the temperature-density relation, and the pressure smoothing
scale (see Pedersen et al. 2023; Cabayol-Garcia et al. 2023).

The release of forestflow is particularly timely for
Lyman-α forest analyses with the ongoing Dark Energy Spec-
troscopic Instrument (DESI) survey. As discussed in Sect. 6,
forestflow enables a range of novel analyses with DESI data,
including linking large- and small-scale studies and extending
three-dimensional analyses to smaller scales. However, before
applying forestflow to cosmological inference, it will be nec-
essary to model the effects of various astrophysical processes
on Lyman-α clustering, including metal contamination, damped
Lyman-α systems, and AGN feedback.

Data availability

forestflow and all the notebooks used to generate the plots
of this paper can be found in Github10, as well as all data points

10 https://github.com/igmhub/ForestFlow
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shown in the published graphs. The simulations utilized for train-
ing and testing the emulator are also publicly accessible11.
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Iršič, V., & McQuinn, M. 2018, JCAP, 2018, 026
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Fig. A.1. Impact of cosmic variance on P3D (top panel) and P1D (bot-
tom panel) measurements from our simulations at z = 3. Lines show the
difference between measurements from the central and seed simu-
lations, which only differ on their initial distribution of Fourier phases,
divided by

√
2 times their average. Cosmic variance induces errors as

large as 10% on P3D for k ' 0.3 Mpc−1, while these are on the order of
1% for P1D.

Appendix A: Cosmic variance

Throughout this work, we trained and tested forestflow
using simulations run employing the "fixed-and-paired" tech-
nique (Angulo & Pontzen 2016; Pontzen et al. 2016), which sig-
nificantly reduces cosmic variance for the clustering of the
Lyman-α forest (Anderson et al. 2019). We could further mit-
igate the impact of cosmic variance by using control variates
(Kokron et al. 2022), but this is outside the scope of the cur-
rent work. The impact of cosmic variance on fixed-and-paired
simulations is not straightforward (Maion et al. 2022), and thus
we would ideally use multiple fixed-and-paired simulations with
different initial distributions of Fourier phases to estimate the
precision of measurements from our simulations. However, we
only have two simulations with these properties: central and
seed. In this section, we use these two simulations to estimate
the impact of cosmic variance on simulation measurements and
best-fitting models. It is crucial to acknowledge that our findings
are subject to significant noise because we only have access to
two independent realizations.

In Fig. A.1, we show the difference between measurements
from the central and seed simulations at z = 3, normalized
by
√

2 times their average12. The central and seed simula-
tions differ only in their initial Fourier phase distributions, allow-
ing their difference to isolate the effects of cosmic variance.
Unlike traditional simulations, where cosmic variance for P3D
scales inversely with the square root of the number of modes, this
uncertainty peaks at ' 10% around k ' 0.3 Mpc−1 and decreases
at both larger and smaller scales. This behavior can be explained
as follows: at the largest scales, the fix-and-paired technique can-
cels cosmic variance for linear density modes, reducing variance.
At intermediate scales, nonlinear evolution, particularly mode
coupling, reintroduces cosmic variance, increasing the uncer-
tainty. At smaller scales, the increasing number of modes leads
to a decrease in cosmic variance, similar to trends observed in
traditional simulations.

12 The factor
√

2 accounts for the noise estimate from a single
simulation.

2.0 2.5 3.0 3.5 4.0 4.5
z

0.05

0.00

0.05

Re
sid

ua
l p

ar
am

ete
r

b b

10 1 100

k [Mpc 1]

0.025

0.000

0.025

Re
sid

ua
l P

3D

0.0 < 0.25
0.25 0.5

0.5 0.75
0.75 1.0

10 1 100

k [Mpc 1]

0.0025

0.0000

0.0025

Re
sid

ua
l P

1D

Fig. A.2. Impact of cosmic variance on predictions from the paramet-
ric model. Lines show the difference between the best-fitting models to
P3D and P1D measurements from the central and seed simulations,
divided by

√
2 times the best-fitting model to their average. The top

panel shows the results for the Lyman-α linear biases (bδ and bη), while
the middle and bottom panels display the results for P3D and P1D at
z = 3, respectively. The impact of cosmic variance on model predic-
tions is approximately an order of magnitude smaller than on simulation
measurements (see Fig. A.1).

Thus, cosmic variance limits our ability to accurately evalu-
ate both the parametric model and forestflow using our sim-
ulations. To mitigate its impact, we restricted the analysis of
P3D performance to scales k > 0.5 Mpc−1 in the main results.
In contrast, cosmic variance has a much smaller effect on P1D,
contributing only about 1.5% uncertainty at k‖ < 2 Mpc−1. This
smaller effect allowed us to include all scales in P1D tests with-
out concern. To more precisely quantify the impact of cosmic
variance on simulation measurements, we computed the stan-
dard deviation of the results shown in Fig. A.1 across redshift.
We did it within the intervals 0.5 < k[ Mpc−1] < 5 for P3D and
0.09 < k‖[ Mpc−1] < 4 for P1D, based on the scales discussed
earlier and those used for fitting the P3D model in Sect. 3.3. We
found that the average impact of cosmic variance is 1.3% for P3D
and 0.5% for P1D.

We expect the impact of cosmic variance on the best-fitting
model to P3D and P1D measurements to be weaker than on sim-
ulation measurements, as multiple P3D and P1D bins collectively
constrain the eight parameters of the model. In Fig. A.2, we show
the difference between the best-fitting models to the central
and seed simulations, normalized by

√
2 times the best-fitting

model to their average. The top panel displays results for the two
Lyman-α linear biases, bδ and bη. The standard deviation of the
differences is 0.6% and 1.8% for bδ and bη, respectively, demon-
strating that we can measure the two Lyman-α linear biases with
percent-level accuracy using our simulations. This precision is
achievable because the combination of small and large scales in

A187, page 17 of 18



Chaves-Montero, J., et al.: A&A, 694, A187 (2025)

0.0 0.2 0.4 0.6 0.8 1.0
PIT

0

1

2

3

4

5

Co
un

ts

P3D

P1D

Fig. B.1. PIT distribution for P1D (blue) and P3D (red). This plot val-
idates the uncertainties predicted by forestflow across training
simulations via a leave-simulation-out approach. The PIT distribution
is approximately uniform, indicating well-calibrated uncertainties for
most samples, while the peaks at the edges indicate underestimated
uncertainties for some samples.

the fits helps break degeneracies between the two linear biases
and the other six model parameters.

By propagating these uncertainties to the behavior of P3D on
linear scales, we find that the impact of cosmic variance on per-
pendicular and parallel modes is 1.2% and 1.8%, respectively. In
the middle and bottom panels of Fig. A.2, we analyze the influ-
ence of cosmic variance on model predictions for P3D and P1D.
The overall impact of cosmic variance on P3D and P1D predic-
tions is 0.8% and 0.1%, respectively, confirming that the best-
fitting model is less sensitive to cosmic variance than individual
simulation measurements. Consequently, forestflow is more
robust against cosmic variance than emulators that predict the
power spectrum at fixed k-bins.

Appendix B: Validation of uncertainties predicted
for P3D and P1D

Normalizing flows predict the full posterior distribution of the
target data rather than only their mean like fully connected
neural networks or their mean and width like Mixture Density
Networks (see Ramachandra et al. 2022; Cabayol-Garcia et al.
2023, for some applications in cosmology). This is achieved
through multiple sampling iterations from the target latent distri-
bution, an eight-dimensional Gaussian in our case. In forest-
flow, each sampled realization of the P3D model parameters
is propagated to generate predictions for P3D and P1D (see
Sect. 4.1), producing a covariance matrix for these statistics. In
this appendix, we validate its diagonal elements. Note that well-
calibrated uncertainties are critical for future uses of forest-
flow such as cosmology inference.

We validated the uncertainty in P3D and P1D predictions
using the Probability Integral Transform test (PIT), which is the
value of the cumulative distribution function (CDF) of a distri-
bution evaluated at the ground-truth value zt

PIT = CDF[p, zt] =

∫ zt

−∞

p(z)dz , (B.1)

where p is in our case the distribution of forestflow predic-
tions for P3D or P1D and zt stands for measurements of these
statistics from the simulations. A model that displays a well-
calibrated uncertainty distribution yields PIT values that are uni-
formly distributed between zero and one. This indicates that the
observed outcomes have an equal likelihood of falling at any
point along the predicted CDF. In contrast, an excess of values
close to zero or one indicates that the width of the distribution is
underestimated.

In Fig. B.1, we display a PIT test produced using all the
training simulations via a leave-simulation-out approach (see
Sect. 5.1). This process validates average predictions and uncer-
tainties against simulations excluded in the training process. The
red and blue lines display the results for P3D and P1D, respec-
tively, which were generated by combining results from differ-
ent scales and redshifts. As we can see, the PIT distribution is
approximately uniform for the two statistics but it presents peaks
at the low and high ends, indicating underestimated uncertainties
for some samples. The cause behind this feature is unclear and it
demands further investigation beyond the scope of this project.
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