Skip to main content

Research Repository

Advanced Search

The two-point correlation function covariance with fewer mocks

Trusov, Svyatoslav; Zarrouk, Pauline; Cole, Shaun; Norberg, Peder; Zhao, Cheng; Aguilar, Jessica Nicole; Ahlen, Steven; Brooks, David; de la Macorra, Axel; Doel, Peter; Font-Ribera, Andreu; Honscheid, Klaus; Kisner, Theodore; Landriau, Martin; Magneville, Christophe; Miquel, Ramon; Nie, Jundan; Poppett, Claire; Schubnell, Michael; Tarlé, Gregory; Zhou, Zhimin

The two-point correlation function covariance with fewer mocks Thumbnail


Authors

Svyatoslav Trusov

Pauline Zarrouk

Cheng Zhao

Jessica Nicole Aguilar

Steven Ahlen

David Brooks

Axel de la Macorra

Peter Doel

Andreu Font-Ribera

Klaus Honscheid

Theodore Kisner

Martin Landriau

Christophe Magneville

Ramon Miquel

Jundan Nie

Claire Poppett

Michael Schubnell

Gregory Tarlé

Zhimin Zhou



Abstract

We present FITCOV an approach for accurate estimation of the covariance of two-point correlation functions that requires fewer mocks than the standard mock-based covariance. This can be achieved by dividing a set of mocks into jackknife regions and fitting the correction term first introduced in Mohammad & Percival (2022), such that the mean of the jackknife covariances corresponds to the one from the mocks. This extends the model beyond the shot-noise limited regime, allowing it to be used for denser samples of galaxies. We test the performance of our fitted jackknife approach, both in terms of accuracy and precision, using lognormal mocks with varying densities and approximate EZmocks mimicking the Dark Energy Spectroscopic Instrument LRG and ELG samples in the redshift range of z = [0.8, 1.1]. We find that the Mohammad–Percival correction produces a bias in the two-point correlation function covariance matrix that grows with number density and that our fitted jackknife approach does not. We also study the effect of the covariance on the uncertainty of cosmological parameters by performing a full-shape analysis. We demonstrate that our fitted jackknife approach based on 25 mocks can recover unbiased and as precise cosmological parameters as the ones obtained from a covariance matrix based on 1000 or 1500 mocks, while the Mohammad–Percival correction produces uncertainties that are twice as large. The number of mocks required to obtain an accurate estimation of the covariance for the two-point correlation function is therefore reduced by a factor of 40–60. The FITCOV code that accompanies this paper is available at this GitHub repository.

Citation

Trusov, S., Zarrouk, P., Cole, S., Norberg, P., Zhao, C., Aguilar, J. N., …Zhou, Z. (2024). The two-point correlation function covariance with fewer mocks. Monthly Notices of the Royal Astronomical Society, 527(3), 9048-9060. https://doi.org/10.1093/mnras/stad3710

Journal Article Type Article
Acceptance Date Nov 28, 2023
Online Publication Date Nov 29, 2023
Publication Date 2024-01
Deposit Date Mar 26, 2024
Publicly Available Date Mar 26, 2024
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 527
Issue 3
Pages 9048-9060
DOI https://doi.org/10.1093/mnras/stad3710
Public URL https://durham-repository.worktribe.com/output/2348302

Files




You might also like



Downloadable Citations