Skip to main content

Research Repository

Advanced Search

Micellar aggregates formed following the addition of hexafluoroisopropanol to phospholipid membranes

Ennaceur, S.M.; Sanderson, J.M.

Authors

S.M. Ennaceur



Abstract

The addition of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) to aqueous phospholipid membranes leads to perturbation of the bilayer. In the case of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), calorimetric and small-angle X-ray scattering analyses indicate that effects are already apparent at bound molar HFIP/lipid ratios of less than 1:150, with a pronounced decrease in the temperature of the main (gel to liquid crystalline) phase transition and a decrease in the intensity of the first- and second-order scattering reflections. As the HFIP concentration is raised further, at bound molar HFIP/lipid ratios >2:1, uniform isotropic particulate structures are formed with higher intrinsic curvature than the parent liposomes. These observations are supported by the results of thin-film experiments and are consistent with the formation of DMPC/HFIP adducts that are detergent-like in nature. In the case of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) the effects are much less marked, with no blebbing observed over a comparable range of HFIP concentrations. Although HFIP interacts strongly with DOPC membranes, it appears that membrane rupture is not promoted as readily with this lipid. Data from electron microscopy, laser correlation spectroscopy, and marker release experiments suggest that some of the immediate (nonequilibrium) effects of HFIP on membranes are the consequence of microinhomogeneity in water/HFIP mixtures. On the basis of our observations, we propose a model for the interaction of HFIP with phospholipid membranes.

Citation

Ennaceur, S., & Sanderson, J. (2005). Micellar aggregates formed following the addition of hexafluoroisopropanol to phospholipid membranes. Langmuir, 21(2), 552-561. https://doi.org/10.1021/la048109y

Journal Article Type Article
Publication Date Jan 1, 2005
Deposit Date Jan 17, 2008
Journal Langmuir
Print ISSN 0743-7463
Electronic ISSN 1520-5827
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 21
Issue 2
Pages 552-561
DOI https://doi.org/10.1021/la048109y
Public URL https://durham-repository.worktribe.com/output/1551932