Professor Suzanne Fielding suzanne.fielding@durham.ac.uk
Professor
Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit
Fielding, Suzanne M.
Authors
Abstract
We introduce a model of friction between two contacting (stationary or cosliding) rough surfaces, each comprising a random ensemble of polydisperse hemispherical bumps. In the simplest version of the model, the bumps experience on contact with each other only pairwise elastic repulsion and dissipative drag. These minimal ingredients are sufficient to capture a static state of jammed, interlocking contacting bumps, below a critical frictional force that is proportional to the normal load and independent of the apparent contact area, consistent with the Amontons-Coulomb laws of friction. However, they fail to capture two widespread observations: (i) that the dynamic friction coefficient (ratio of frictional to normal force in steady sliding) is a roughly constant or slightly weakening function of the sliding velocity U , at low U , with a nonzero quasistatic limit as U → 0 and (ii) that the static friction coefficient (ratio of frictional to normal force needed to initiate sliding) increases (“ages”) as a function of the time that surfaces are pressed together in stationary contact, before sliding commences. To remedy these shortcomings, we incorporate a single additional model ingredient: that contacting bumps plastically nudge one another slightly sideways, above a critical contact-contact load. With this additional insight, the model also captures observations (i) and (ii).
Citation
Fielding, S. M. (2023). Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit. Physical Review Letters, 130(17), Article 178203. https://doi.org/10.1103/physrevlett.130.178203
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 23, 2023 |
Online Publication Date | Apr 27, 2023 |
Publication Date | Apr 28, 2023 |
Deposit Date | May 2, 2023 |
Publicly Available Date | May 2, 2023 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 130 |
Issue | 17 |
Article Number | 178203 |
DOI | https://doi.org/10.1103/physrevlett.130.178203 |
Public URL | https://durham-repository.worktribe.com/output/1173714 |
Files
Published Journal Article
(687 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
You might also like
Simple and effective mechanical cloaking
(2024)
Journal Article
Slow Fatigue and Highly Delayed Yielding via Shear Banding in Oscillatory Shear
(2024)
Journal Article
Power law creep and delayed failure of gels and fibrous materials under stress
(2024)
Journal Article
Discontinuous Shear Thickening in Biological Tissue Rheology
(2024)
Journal Article
Constitutive model for the rheology of biological tissue
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search