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We introduce a model of friction between two contacting (stationary or cosliding) rough surfaces, each
comprising a random ensemble of polydisperse hemispherical bumps. In the simplest version of the model,
the bumps experience on contact with each other only pairwise elastic repulsion and dissipative drag. These
minimal ingredients are sufficient to capture a static state of jammed, interlocking contacting bumps, below
a critical frictional force that is proportional to the normal load and independent of the apparent contact
area, consistent with the Amontons-Coulomb laws of friction. However, they fail to capture two widespread
observations: (i) that the dynamic friction coefficient (ratio of frictional to normal force in steady sliding) is
a roughly constant or slightly weakening function of the sliding velocity U, at low U, with a nonzero
quasistatic limit as U → 0 and (ii) that the static friction coefficient (ratio of frictional to normal force
needed to initiate sliding) increases (“ages”) as a function of the time that surfaces are pressed together in
stationary contact, before sliding commences. To remedy these shortcomings, we incorporate a single
additional model ingredient: that contacting bumps plastically nudge one another slightly sideways, above
a critical contact-contact load. With this additional insight, the model also captures observations (i) and (ii).
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The physics of friction governs the resistance of con-
tacting surfaces to relative sliding. It dominates myriad
systems, on length scales ranging from the microscopic, in
micromachines and biological motors [1], to the geophysi-
cal, in earthquake faults [2]. The macroscopic rheology of
granular matter [3] and dense granular suspensions [4,5] is
determined largely by the friction acting microscopically
between grains. From an economic viewpoint, it has been
argued that about 1% of gross national product could be
saved by mitigating friction [6]. Although its scientific
study dates back to Leonardo da Vinci in the 15th century,
many outstanding challenges remain even today. For
reviews, see Refs. [1,7–11].
From a macroscopic viewpoint, the Amontons-Coulomb

laws [12] state that the frictional force F acting tangentially
between two surfaces is directly proportional to the normal
force N between them, and independent of their apparent
contact area A. Furthermore, the frictional force F ¼ FD in
dynamic sliding is roughly independent of the relative sliding
velocity U. The ratio of frictional to normal force, encoded
in the coefficient of friction, μ ¼ F=N, is typically in
the range 0.1–1 (with lower values in superlubricity [13]).

The frictional force FS needed to initiate sliding from rest
typically exceeds its dynamic counterpart in steady sliding,
μS > μD. Later corrections [14] to these phenomenological
laws showed that the coefficient of sliding friction μD in fact
tends to decrease (“weaken”) slightly with increasing U, at
small U; and that the coefficient of static friction μS often
increases (“ages”) over the time that surfaces are pressed in
stationary contact, before sliding commences.
Theoretical approaches to friction range from models

[15,16] and quantum mechanical simulations [17,18] of
nanofriction, to molecular dynamics simulations [9,19], to
mesoscopicmulticontactmodels [20,21], up to rate-and-state
models, which coarse grain the surface rheology as a whole
via a small number ofmacroscopic dynamical variables, and
posit constitutive equations for their evolution [22,23].
Among these, multicontact models are appealing in allowing
access to larger time and length scales than molecular
simulations, while avoiding the severe constitutive assump-
tions of rate-and-state models. Indeed, the only assumptions
are mesoscopic ones of pairwise interactions between con-
tacting surface bumps, withmacroscopic surface rheological
(frictional) behavior then emerging out of a many-body
bump level simulation. This is akin to assuming pairwise
interactions in a particle level simulation of a soft material,
from which macroscopic bulk rheology then emerges.
Indeed, some early attempts to understand friction invoked

a multicontact picture in which the bumps of contacting
surfaces interlock [24]. Within any such description, a key
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puzzle is how to explain the observation that the dynamic
friction coefficient approaches a finite limit in quasistatic
sliding, limU→0μDðUÞ ≠ 0. In particular, within such simple
bumpmodels, theworkdone against the elastic repulsion that
resists the coming together of any two bumps should be
exactly recovered by that hastening their separation as they
move past each other and part, giving zero average force.
(Adding dissipation confers a kinetic friction, but only at
finite U).
Attempts to resolve this conundrum have variously

invoked internal surface instabilities, in which motion
proceeds via a series of discontinuous jumps [15,16];
elastohydrodynamics, with a high shear rate in a thin
lubrication film between contacts [25]; and slow “soft
glassy rheology” in the nanometric “joint” between con-
tacts [26]. In essence, these approaches involve either a
finite rate of internal surface deformation processes even as
U → 0, or a zero rate of stress relaxation, such that the
friction, scaling as the ratio of deformation rate to stress
relaxation rate, remains finite as U → 0.
In this Letter, we introduce a simple multicontact model

of friction between contacting rough surfaces, Figs. 1 and 2,
and demonstrate it to capture all the key friction phenom-
enology discussed above. In particular, it resolves the
conundrum just described via the basic insight (made in
moving from model version A to B below) that two
contacting bumps, above a critical pairwise contact-contact
load, nudge each other irreversibly slightly sideways as
they pass (for cosliding surfaces) or are pressed together (in
stationary contacting surfaces). In this way, for cosliding
surfaces, the work done against the elastic repulsion
resisting their approach (in the direction x of overall
sliding) exceeds that hastening their separation as they
later part, because they have meanwhile nudged each other
slightly sideways along y. See Fig. 2 (bottom). This confers
a finite dynamic friction coefficient μD, even in quasistatic
sliding, U → 0, and predicts μD to decrease slightly at
small U, before it increases again at large U, as dissipation

leads to greater relative dynamic surface drag. It also
captures the widely observed ageing over time of the
coefficient of static friction μS (with μS > limU→0μD) for
surfaces pressed together in stationary contact, as contacts
progressively nudge sideways, allowing closer surface
meshing. In contrast, model A, with no plastic contact
nudging, has μDðU ¼ 0Þ ¼ 0 and no ageing of μS.
The notion of irreversible plastic contact deformation is

consistent with the insight that the real contact area between
rough surfaces, in being composed of many contacting
microscopic asperities, is much less than the apparent
contact area [12,27]. In this way, the actual load per area
borne by the contacts greatly exceeds the apparent load per
area across the surfaces, and can exceed the threshold for
plastic contact yielding. Indeed, the sideways plastic
nudging of bumps that otherwise keep their shape, as
adopted here, is intended as a simple cartoon of sideways
plastic bump deformation, which would however be much
more difficult to model. We do not expect this simplifica-
tion to affect our conclusions: the argument summarized in
Fig. 2 holds in either case.
Model A.—Model A considers two opposing surfaces,

each comprising a flat plate studded with polydisperse
hemispherical bumps (Fig. 1). The bump radii R are drawn
from a top-hat distribution of mean R0 and half-width αR0.
The fractional bump area coverage of each surface is ϕ.
The bump locations in the xy plane of each surface are first
initialized at random, so inevitably with some xy overlaps
within each surface. These are removed numerically via
steepest descent dynamical repulsion in xy. Thereafter (in
model A) the bumps maintain fixed positions relative to
their respective plates. (We relax this assumption in model
B below.) The upper surface, which has P bumps (setting
our system size), can move relative to the lower surface,
which is much larger and fixed in space.
We denote the initial separation along z between the two

surfaces at any x, y by hðx; yÞ, and define h0 to be the
minimum of h over x and y. Starting from a small initial

FIG. 1. Model of friction between opposing rough surfaces.
Each surface comprises a plate studded with polydisperse
hemispherical bumps. The plates are pressed together with a
normal load N per area, and subjected to either an imposed
frictional force F per area, with the sliding velocity U measured,
or an imposed U, with F measured.

FIG. 2. A bump on the upper surface passes one on the lower
surface. In model A, with no plastic contact nudging, the left-
right symmetry results in zero average frictional force along x, in
the quasistatic limit U → 0. In contrast, in model B, the elastic
repulsion hindering contact-contact approach along x exceeds
that hastening separation, because the contacts meanwhile
plastically nudge each other sideways in y.
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separation h0 between the surfaces at time t ¼ 0, the upper
surface is pressed onto the lower one with a normal force
per unit area −Nẑ for all times t > 0. During an initial
“waiting time” of duration tw, it is held stationary in xy.
For all subsequent times t > tw, it is subject to either a
prescribed sliding velocity that rises on a short timescale τ
from rest to Ux̂ and is held constant thereafter, with the
frictional force per unit area Fx̂ measured in response
(imposed velocity mode), or to a prescribed constant
frictional force Fx̂, with the sliding velocity Ux̂ measured
in response (imposed force mode). Its y position and
angular orientation are fixed.
When any two opposing bumps i and j make contact,

they experience equal and opposite pairwise elastic repul-
sion with modulus G, and dissipation with drag coefficient
η: the contact force on i is f⃗i¼−G½1−r=ðRiþRjÞ�r̂−ηv⃗rel,

with r⃗ the i → j center-center vector and v⃗rel ¼ _r⃗ the
relative velocity of i and j. The net force on the upper
plate is the sum of those acting on its constituent bumps,
plus an external force comprising (per unit area) the load
−Nẑ, a lateral force Lŷ calculated to maintain the plate’s
constant y position, plus the frictional force Fx̂. F is either
prescribed (imposed force mode) or calculated to ensure a
given imposed sliding speed (imposed velocity mode). The
upper plate has mass per unit area M and obeys Newton’s
second law, evolved numerically with time step Δt, with
results converged to Δt → 0.
Model B.—Model B is the same as model A except for a

single additional physical ingredient: that contacting bumps
can irreversibly nudge each other sideways. Specifically,
when any bump i on the upper plate experiences a net
contact force f⃗i of magnitude Fi that exceeds a threshold
FY , it moves plastically relative to the plate at velocity

v⃗i ¼ ðFi − FYÞ ˆf⃗i=ζ, along ˆf⃗i, with drag coefficient ζ. For
computational efficiency we take the bumps on the lower
plate to be much less compliant, so not subject to plastic
nudging. We do not expect this simplification to affect any
of our key physical conclusions.
The parameters of the model are the number of bumps P,

average bump radius R0, bump polydispersity α, bump area
coverage of the plates ϕ, modulus of the bump material G,
dissipation between contacting bumps η, plate massM, and
(in model B only) the threshold force Fy and above-
threshold drag ζ. The parameters of the experimental
protocol are the initial plate separation h0, imposed normal
load N, how long the plates are pressed together in contact
before sliding starts tw, imposed tangential velocity U (or
frictional force F), and velocity rise time τ. Of these,
three set our units of mass, length, and time: R0 ¼ 1, η ¼ 1,
N ¼ 1 (after rescaling the kinetic coefficients η → η

ffiffiffiffi

G
p

and ζ → ζ
ffiffiffiffi

G
p

for convenience). Our results are indepen-
dent ofM, h0, τ, P, andG in the physically relevant limit of
large P and G. Unless otherwise stated we set M ¼ 1.0,
h0 ¼ 0.5, τ ¼ 1.0, P ¼ 512, and G ¼ 103, ϕ ¼ 0.3, and

α ¼ 0.5. The remaining parameters to explore are then
(of the protocol) U (or F) and tw, and (in model B) FY
and ζ.
Results.—We start by describing the predictions of

model A in imposed velocity mode. Figure 3 (left) shows
as a solid line the dynamical friction coefficient μD vs the
imposed dimensionless sliding velocity U, averaged over
many time units once a state of statistically steady sliding is
attained. In the lubrication literature, this is called the
Stribeck curve. In model A, μD is linear in U, with zero
dynamical friction in the limit of quasistatic sliding,
U → 0. The reason is as follows. Consider any two
opposing bumps as they approach, pass, then move apart
along the direction x of plate sliding. In model A, these ex-
perience on contact only elastic repulsion and (at finite U)
dissipation. The resulting left-right symmetry, Fig. 2 (top),
means that the elastic force hindering their approach is
exactly canceled by that hastening their separation, giving
zero friction on average for U → 0.
The dynamical friction coefficient as a function of

time t − tw since the imposition of sliding is shown in
Fig. 3 (right). This displays a slight overshoot before settl-
ing onto the final state of statistically steady sliding. The
overshoot height is independent of the waiting time tw
before sliding starts: model A lacks frictional ageing. Each
curve μðt − twÞ is averaged over 10 runs with different
bump initializations. Averaging over more runs would
further smooth the irregular nature of the signal.
If we instead impose the frictional force F, we find a

critical threshold force FS below which there is a jammed
state of interlocking bumps with no relative sliding. Above
this threshold, a state of statistically steady sliding is
attained, with the same dynamical friction coefficient as
in the mode of imposed velocity U explored above. See
Fig. 3 (left, red dashed line).
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FIG. 3. Model A. Left: solid line, Stribeck curve of dynamical
friction coefficient μD vs imposed sliding velocityU; dashed line,
counterpart curve obtained by instead imposing the frictional
force, tw ¼ 10.0. Right: dynamical friction coefficient vs time
t − tw since sliding starts for system size P ¼ 4096 at U ¼ 0.1,
after a waiting time tw of stationary contact, with tw ¼ 100;
101=2; 101; 103=2; 102 (curves indistinguishable); each curve aver-
aged over 10 seed values.
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Compared with the key friction phenomenology sum-
marized above, model A has some significant shortcom-
ings. First, it fails to capture the widespread observation
that μD is relatively independent of U in slow sliding, and
with a finite value in the limit of quasistatic sliding,U → 0.
Second, it fails to predict the widely observed slight weak-
ening of μD with increasing U. Third, it fails to predict the
ageing of μS with increasing time tw that surfaces are pressed
together in stationary contact before sliding commences.
To remedy these shortcomings, we turn now to model B.
Model B’s Stribeck curve of dynamical friction vs

imposed velocity is shown by the black solid line in
Fig. 4 (left). (The counterpart curve for model A is shown
by the dotted line for comparison.) In important contrast to
model A, model B now predicts μD to be relatively
independent of U in slow sliding, with a finite quasistatic
limit as U → 0. The reason is as follows. As two contacts
pass each other along x, they also nudge each other slightly
sideways along y. The elastic force resisting their approach
along x thereby exceeds that hastening their later coming
apart, because they have meanwhile nudged each other
sideways. Model B also successfully predicts a slight
weakening of μD with increasing U, before μD increases
again at high U due to dissipation. In imposed force mode,
a static state of stationary interlocking bumps is predicted
below a threshold μS that slightly exceeds μDðU ¼ 0Þ (red
dashed line in Fig. 4, left).
Model B’s dynamical friction coefficient as a function

of time t − tw since sliding commences is shown in
Fig. 4 (right). As in model A, this displays a slight
overshoot before settling onto the final state of statistically
steady sliding. In notable contrast to model A, however, the
height of the overshoot increases with the waiting time tw

before sliding starts: model B captures frictional ageing via
contacts progressively nudging each other slightly side-
ways as surfaces are pressed together in stationary contact,
allowing gradually closer surface meshing.
In Fig. 5, we explore the dependence of model B’s

Stribeck curves on the threshold FY and drag coefficient ζ
for contact nudging. Increasing the drag coefficient ζ
simply makes nudging more sluggish and shifts its effects
to lower U (left panel). Indeed, taking ζ → ∞ at fixed U,
the contacts are unable to nudge at all, and model B reverts
to model A. Figure 5 (right) shows the effect of changing
the nudging threshold FY . As FY → ∞, contacts are again
unable nudge, recovering model A. For the smaller values
of FY explored, μ is relatively independent of FY . (For very
small FY , in the limit U → 0, we might again expect a
return to zero μD, because zero force is needed to nudge the
contacts. However, this regime is likely to be unphysical:
we do not expect contacts to nudge plastically at arbitrarily
small forcing).
We have verified the friction coefficient to be indepen-

dent of system size by performing runs for P ¼ 1024 (data
not shown) as well as the default P ¼ 512. In this way, our
model predicts the frictional force to be independent of the
apparent area of contact between surfaces, consistent with
the Amontons-Coulomb laws.
In quasistatic sliding, the only parameters with dimen-

sions of force that can determine the frictional force F in
model B are the normal load N, particle modulus G, and
nudging threshold FY . We have just shown the coefficient
of friction to be relatively independent of FY , for moderate
FY . In the inset of Fig. 4 (left), we further demonstrate the
coefficient of friction to approach a value independent of
the contact modulus G at large G ≈ 104. (G ¼ 104 is
however very costly numerically and our default value
otherwise is G ¼ 103.) In this way, our model predicts the
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FIG. 4. Model B with ζ ¼ 10.0, FY ¼ 40.0. Left: solid line,
Stribeck curve (dotted, Stribeck curve of model A for compari-
son); dashed, counterpart curve when imposing the frictional
force, tw ¼ 10.0. Inset: value of μS (dashed) and of μD nearing the
quasistatic limit, U ¼ 0.01 (solid) vs modulus G. Right: dynami-
cal friction coefficient vs time t − tw since sliding starts for
system size P ¼ 4096 at U ¼ 0.1, after a waiting time tw of
stationary contact, with tw ¼ 100; 101=2; 101; 103=2; 102 in order
of increasing maximum; each curve averaged over 10 seed
values.
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FIG. 5. Model B. Stribeck curves of dynamical friction co-
efficient μD vs imposed sliding velocity U. Left: for fixed
threshold FY ¼ 40.0 and varying drag coefficient ζ ¼ 10n for
plastic contact nudging, with n ¼ 1, 2, 3, 4, 100 in curves
downward. For n ¼ 100, nudging is suppressed, and model B
reduces to model A. Right: for fixed ζ ¼ 10.0 and varying
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frictional force to be proportional to the load N, consistent
with the Amontons-Coulomb laws.
Conclusions.—We have introduced a multicontact model

of rough contacting surfaces, and showed it to capture the
key phenomenology of static and dynamic friction. Our
choice of hemispherical bumps with a top-hat polydisper-
sity distribution of radii, randomly placed on the plates,
necessarily corresponds to a particular statistics of surface
roughness. In practice, rough surfaces are often self-similar
in nature, and it would be interesting to consider a correlated
placing of the bumps with a fractal surface morphology. In
practice, such surface statistics [28] are likely to determine
the detailed functional form of the weakening dynamical
friction coefficient μDðUÞ and ageing static friction coef-
ficient μSðtwÞ, a study we defer to futurework. Our treatment
does not capture the ageing sometimes observed of the
dynamic friction coefficient μD, instead admitting a steady
Stribeck curve μDðUÞ: the ensemble of bumps attains a
statistically steady state at anyU, even though any individual
bump is nudged around on contact with others. Ageing of μD
could potentially be incorporated via a plasticwearing down
of bumps on contact. It would also be interesting to
investigate the effects of bump-bump adhesion on ageing
[29] in this model.
Our study captures much of the observed phenomenol-

ogy of both dry solid surfaces, with dissipation due to
plasticity within contacts, as well as lubricated ones, with
dissipation in fluid films. However, it does not consider in
detail the hydrodynamic interactions between the contacts,
which should properly be modeled via Stokes flow in the
lubrication regime [25,30,31]. Instead, we have adopted a
simplified drag term −ηv⃗rel between close contacts. Both
approaches will, however, give Stribeck curves with
increasing μðUÞ at high U. Our key focus has instead
been on small to moderate U.
Throughout, we have focused on materials with contacts

sufficiently far apart that elastic stress propagation between
them, within each surface, can be neglected. Including this
could address the initial onset of sliding via spatiotempor-
ally propagating rupture fronts [32–38].
It is worth noting finally a similarity between (a) the

tribology of opposing surfaces comprising disordered
ensembles of soft bumps and (b) the rheology of yield
stress fluids comprising disordered packings of soft par-
ticles [39]. The latter are often termed “elastoviscoplastic,”
with analogy to the elastic contact forces, viscous drag
forces, and plastic contact nudging here. The force-velocity
“Stribeck” curves of (a) and the stress and strain rate “flow
curves” of (b) both show jamming below a critical forcing,
and sliding and shearing at larger forcing. The frictional
force in (a) and shear stress in (b) show an overshoot vs the
time t − tw since in the inception of sliding and shearing,
with a height that grows with increasing waiting time tw
before sliding or shearing commenced. Our model of
(a) also predicts creep-and-yielding curves following the

imposition of a step frictional force (not shown) with the
same rich qualitative features as shear rate vs time in
(b) following the imposition of a step shear stress, the study
of which we defer to future work.
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