Henry A. Lockwood
Power law creep and delayed failure of gels and fibrous materials under stress
Lockwood, Henry A.; Agar, Molly H.; Fielding, Suzanne M.
Abstract
Motivated by recent experiments studying the creep and breakup of a protein gel under stress, we introduce a simple mesoscopic model for the irreversible failure of gels and fibrous materials, and demonstrate it to capture much of the phenomenology seen experimentally. This includes a primary creep regime in which the shear rate decreases as a power law over several decades of time, a secondary crossover regime in which the shear rate attains a minimum, and a tertiary regime in which the shear rate increases dramatically up to a finite time singularity, signifying irreversible material failure. The model also captures a linear Monkman–Grant scaling of the failure time with the earlier time at which the shear rate attained its minimum, and a Basquin-like power law scaling of the failure time with imposed stress, as seen experimentally. The model furthermore predicts a slow accumulation of low levels of material damage during primary creep, followed by the growth of fractures leading to sudden material failure, as seen experimentally.
Citation
Lockwood, H. A., Agar, M. H., & Fielding, S. M. (2024). Power law creep and delayed failure of gels and fibrous materials under stress. Soft Matter, 20(11), 2474-2479. https://doi.org/10.1039/d3sm01608k
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 14, 2024 |
Online Publication Date | Feb 22, 2024 |
Publication Date | Mar 21, 2024 |
Deposit Date | Mar 28, 2024 |
Publicly Available Date | Mar 28, 2024 |
Journal | Soft Matter |
Print ISSN | 1744-683X |
Electronic ISSN | 1744-6848 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 11 |
Pages | 2474-2479 |
DOI | https://doi.org/10.1039/d3sm01608k |
Public URL | https://durham-repository.worktribe.com/output/2276116 |
Files
Published Journal Article
(1.3 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/
You might also like
Simple and effective mechanical cloaking
(2024)
Journal Article
Slow Fatigue and Highly Delayed Yielding via Shear Banding in Oscillatory Shear
(2024)
Journal Article
Discontinuous Shear Thickening in Biological Tissue Rheology
(2024)
Journal Article
Constitutive model for the rheology of biological tissue
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search