Skip to main content

Research Repository

Advanced Search

Disruption of epithelial barrier integrity via altered GILZ/c-Rel/RACK1 signaling in inflammatory bowel disease (IBD).

Buoso, Erica; Masi, Mirco; Limosani, Roberta Valeria; Fagiani, Francesca; Oliviero, Chiara; Colombo, Giorgia; Cari, Luigi; Gentili, Marco; Lusenti, Eleonora; Rosati, Lucrezia; Pisati, Federica; Pasini, Alessandra; Lenti, Marco Vincenzo; Di Sabatino, Antonio; Mobbs, Claire Louise; Przyborski, Stefan; Ronchetti, Simona; Travelli, Cristina; Racchi, Marco

Authors

Erica Buoso

Mirco Masi

Roberta Valeria Limosani

Francesca Fagiani

Chiara Oliviero

Giorgia Colombo

Luigi Cari

Marco Gentili

Eleonora Lusenti

Lucrezia Rosati

Federica Pisati

Alessandra Pasini

Marco Vincenzo Lenti

Antonio Di Sabatino

Claire Louise Mobbs

Simona Ronchetti

Cristina Travelli

Marco Racchi



Abstract

Given the role of Receptor for Activated C Kinase 1 (RACK1) in both immune cell activation and in the maintenance of the intestinal epithelial barrier integrity, we investigated whether it was involved in inflammatory bowel disease (IBD). RACK1 expression was analyzed in intestinal mucosal samples of healthy and IBD patients, in mice with chemically-induced colitis and in diseased in vitro 2D and 3D co-culture models by luciferase assay, RT-qPCR, Western blotting, immunofluorescence and immunohistochemistry. Based on our finding that glucocorticoid-induced leucine zipper (GILZ or tsc22d3) positively correlates with RACK1 expression in IBD patients, GILZ knock-out mice and cell silencing experiments were performed. RACK1 was significantly decreased in IBD, especially in ulcerative colitis. This was associated with a NF-κB/c-Rel-related mechanism, correlating with decreased GILZ protein expression. GILZ depletion confirmed a decrease in RACK1 expression, which favored SRC activation and led to a significant reduction in E-cadherin, resulting in impaired epithelial barrier integrity. Finally, our data highlighted that this novel mechanism could be considered to develop new therapies since dexamethasone, the first line of treatment in IBD, restored RACK1 expression through the glucocorticoid receptor in a c-Rel/GILZ independent manner. We provide the first evidence that an alteration of RACK1/SRC/E-cadherin regulatory mechanism, correlating with decreased GILZ protein expression is involved in epithelial barrier disruption. The clinical relevance is based on the fact that this mechanism involving GILZ/cRel-related RACK1 expression could be considered to improve IBD therapies, particularly in patients with low or no response to glucocorticoid treatment.

Citation

Buoso, E., Masi, M., Limosani, R. V., Fagiani, F., Oliviero, C., Colombo, G., Cari, L., Gentili, M., Lusenti, E., Rosati, L., Pisati, F., Pasini, A., Lenti, M. V., Di Sabatino, A., Mobbs, C. L., Przyborski, S., Ronchetti, S., Travelli, C., & Racchi, M. (2025). Disruption of epithelial barrier integrity via altered GILZ/c-Rel/RACK1 signaling in inflammatory bowel disease (IBD). Journal of Crohn's and Colitis, 19(1), jjae191. https://doi.org/10.1093/ecco-jcc/jjae191

Journal Article Type Article
Acceptance Date Dec 17, 2024
Online Publication Date Dec 18, 2024
Publication Date 2025-01
Deposit Date Jan 17, 2025
Journal Journal of Crohn's & colitis
Print ISSN 1873-9946
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 19
Issue 1
Pages jjae191
DOI https://doi.org/10.1093/ecco-jcc/jjae191
Keywords GILZ, RACK1, Glucocorticoids, Intestinal Permeability, Inflammation, IBD
Public URL https://durham-repository.worktribe.com/output/3324405