Skip to main content

Research Repository

Advanced Search

Modeling complex flow structures and drag around a submerged plant of varied posture

Boothroyd, R.J.; Hardy, R.J.; Warburton, J.; Marjoribanks, T.I.

Modeling complex flow structures and drag around a submerged plant of varied posture Thumbnail


R.J. Boothroyd

T.I. Marjoribanks


Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through Terrestrial Laser Scanning, into a Computational Fluid Dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65 000 – 110 000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin–Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allows a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.


Boothroyd, R., Hardy, R., Warburton, J., & Marjoribanks, T. (2017). Modeling complex flow structures and drag around a submerged plant of varied posture. Water Resources Research, 53(4), 2877-2901.

Journal Article Type Article
Acceptance Date Mar 10, 2017
Online Publication Date Apr 8, 2017
Publication Date Apr 8, 2017
Deposit Date Mar 16, 2017
Publicly Available Date Mar 23, 2017
Journal Water Resources Research
Print ISSN 0043-1397
Electronic ISSN 1944-7973
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 53
Issue 4
Pages 2877-2901


Accepted Journal Article (8.6 Mb)

Publisher Licence URL

Copyright Statement
© 2017. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any<br /> medium, provided the original work is properly cited.

You might also like

Downloadable Citations