Gillian R. Foulger
Global review of human-induced earthquakes
Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard
Authors
Mr Miles Wilson miles.wilson@durham.ac.uk
Academic Visitor
Professor Jon Gluyas j.g.gluyas@durham.ac.uk
Professor
Bruce R. Julian
Richard Davies
Abstract
The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsurface by allowing abandoned mines to flood and injecting fluid for waste disposal, enhanced oil recovery, hydrofracturing, gas storage and carbon sequestration. Nuclear explosions induce earthquakes but evidence for chemical explosions doing so is weak. Because it is currently impossible to determine with 100% certainty which earthquakes are induced and which not, HiQuake includes all earthquake sequences proposed on scientific grounds to have been human-induced regardless of credibility. Challenges to constructing HiQuake include under-reporting which is ~ 30% of M ~ 4 events, ~ 60% of M ~ 3 events and ~ 90% of M ~ 2 events. The amount of stress released in an induced earthquake is not necessarily the same as the anthropogenic stress added because pre-existing tectonic stress may also be released. Thus earthquakes disproportionately large compared with the associated industrial activity may be induced. Knowledge of the magnitude of the largest earthquake that might be induced by a project, MMAX, is important for hazard reduction. Observed MMAX correlates positively with the scale of associated industrial projects, fluid injection pressure and rate, and the yield of nuclear devices. It correlates negatively with calculated inducing stress change, likely because the latter correlates inversely with project scale. The largest earthquake reported to date to be induced by fluid injection is the 2016 M 5.8 Pawnee, Oklahoma earthquake, by water-reservoir impoundment the 2008 M ~ 8 Wenchuan, People's Republic of China, earthquake, and by mass removal the 1976 M 7.3 Gazli, Uzbekistan earthquake. The minimum amount of anthropogenic stress needed to induce an earthquake is an unsound concept since earthquakes occur in the absence of industrial activity. The minimum amount of stress observed to modulate earthquake activity is a few hundredths of a megapascal and possibly as little as a few thousandths, equivalent to a few tens of centimeters of water-table depth. Faults near to failure are pervasive in the continental crust and induced earthquakes may thus occur essentially anywhere. In intraplate regions neither infrastructure nor populations may be prepared for earthquakes. Human-induced earthquakes that cause nuisance are rare, but in some cases may be a significant problem, e.g., in the hydrocarbon-producing areas of Oklahoma, USA. As the size of projects and density of populations increase, the potential nuisance of induced earthquakes is also increasing and effective management strategies are needed.
Citation
Foulger, G. R., Wilson, M., Gluyas, J., Julian, B. R., & Davies, R. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438-514. https://doi.org/10.1016/j.earscirev.2017.07.008
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 23, 2017 |
Online Publication Date | Jul 26, 2017 |
Publication Date | Mar 1, 2018 |
Deposit Date | Aug 15, 2017 |
Publicly Available Date | Aug 15, 2017 |
Journal | Earth-Science Reviews |
Print ISSN | 0012-8252 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 178 |
Pages | 438-514 |
DOI | https://doi.org/10.1016/j.earscirev.2017.07.008 |
Files
Accepted Journal Article
(16.8 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Published Journal Article
(33.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
A dynamic baseline for dissolved methane in English groundwater
(2019)
Journal Article
Identifying groundwater compartmentalisation for hydraulic fracturing risk assessments
(2018)
Journal Article