Dr Katie Gittins katie.gittins@durham.ac.uk
Associate Professor
Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter
Gittins, K.; Helffer, B.
Authors
B. Helffer
Abstract
We consider the cases where there is equality in Courant’s nodal domain theorem for the Laplacian with a Robin boundary condition on the square. In our previous two papers, we treated the cases where the Robin parameter h>0 is large, small respectively. In this paper we investigate the case where h<0.
Citation
Gittins, K., & Helffer, B. (2021). Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter. Asymptotic Analysis, 124(1-2), 69-107. https://doi.org/10.3233/asy-201642
Journal Article Type | Article |
---|---|
Online Publication Date | Jul 8, 2021 |
Publication Date | 2021 |
Deposit Date | Sep 15, 2020 |
Publicly Available Date | Sep 15, 2020 |
Journal | Asymptotic Analysis |
Print ISSN | 0921-7134 |
Electronic ISSN | 1875-8576 |
Publisher | IOS Press |
Peer Reviewed | Peer Reviewed |
Volume | 124 |
Issue | 1-2 |
Pages | 69-107 |
DOI | https://doi.org/10.3233/asy-201642 |
Public URL | https://durham-repository.worktribe.com/output/1262257 |
Files
Accepted Journal Article
(546 Kb)
PDF
Copyright Statement
The final publication is available at IOS Press through http://dx.doi.org/10.3233/ASY-201642
You might also like
Upper bounds for Courant-sharp Neumann and Robin eigenvalues
(2020)
Journal Article
Uniform bounds for the heat content of open sets in Euclidean space
(2015)
Journal Article
Some spectral applications of McMullen's Hausdorff dimension algorithm
(2012)
Journal Article
Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms
(2023)
Journal Article
Maximising Neumann eigenvalues on rectangles
(2016)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search