Michela Egidi
Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms
Egidi, Michela; Gittins, Katie; Habib, Georges; Peyerimhoff, Norbert
Authors
Dr Katie Gittins katie.gittins@durham.ac.uk
Associate Professor
Georges Habib
Professor Norbert Peyerimhoff norbert.peyerimhoff@durham.ac.uk
Professor
Abstract
In this paper we introduce the magnetic Hodge Laplacian, which is a generalization of the magnetic Laplacian on functions to differential forms. We consider various spectral results, which are known for the magnetic Laplacian on functions or for the Hodge Laplacian on differential forms, and discuss similarities and differences of this new “magnetic-type” operator.
Citation
Egidi, M., Gittins, K., Habib, G., & Peyerimhoff, N. (2023). Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms. Journal of Spectral Theory, 13(4), 1297-1343. https://doi.org/10.4171/JST/480
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 23, 2023 |
Online Publication Date | Feb 13, 2024 |
Publication Date | 2023 |
Deposit Date | Oct 31, 2023 |
Publicly Available Date | Mar 20, 2024 |
Journal | Journal of Spectral Theory |
Print ISSN | 1664-039X |
Electronic ISSN | 1664-0403 |
Publisher | EMS Press |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Issue | 4 |
Pages | 1297-1343 |
DOI | https://doi.org/10.4171/JST/480 |
Public URL | https://durham-repository.worktribe.com/output/1871832 |
Related Public URLs | https://doi.org/10.48550/arXiv.2211.08019 |
Files
Published Journal Article
(508 Kb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Upper bounds for Courant-sharp Neumann and Robin eigenvalues
(2020)
Journal Article
Uniform bounds for the heat content of open sets in Euclidean space
(2015)
Journal Article
Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter
(2021)
Journal Article
Some spectral applications of McMullen's Hausdorff dimension algorithm
(2012)
Journal Article
Maximising Neumann eigenvalues on rectangles
(2016)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search