Dr Katie Gittins katie.gittins@durham.ac.uk
Assistant Professor
We consider the cases where there is equality in Courant’s nodal domain theorem for the Laplacian with a Robin boundary condition on the square. In our previous two papers, we treated the cases where the Robin parameter h>0 is large, small respectively. In this paper we investigate the case where h<0.
Gittins, K., & Helffer, B. (2021). Courant-sharp Robin eigenvalues for the square: The case of negative Robin parameter. Asymptotic Analysis, 124(1-2), 69-107. https://doi.org/10.3233/asy-201642
Journal Article Type | Article |
---|---|
Online Publication Date | Jul 8, 2021 |
Publication Date | 2021 |
Deposit Date | Sep 15, 2020 |
Publicly Available Date | Sep 15, 2020 |
Journal | Asymptotic Analysis |
Print ISSN | 0921-7134 |
Electronic ISSN | 0921-7134 |
Publisher | IOS Press |
Peer Reviewed | Peer Reviewed |
Volume | 124 |
Issue | 1-2 |
Pages | 69-107 |
DOI | https://doi.org/10.3233/asy-201642 |
Accepted Journal Article
(546 Kb)
PDF
Copyright Statement
The final publication is available at IOS Press through http://dx.doi.org/10.3233/ASY-201642
Do the Hodge spectra distinguish orbifolds from manifolds? Part 1
(2023)
Journal Article
Upper bounds for Courant-sharp Neumann and Robin eigenvalues
(2020)
Journal Article
Heat Flow from Polygons
(2020)
Journal Article
Courant-sharp Robin eigenvalues for the square: the case with small Robin parameter
(2020)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search