Shyam Balaji
Cosmological bubble friction in local equilibrium
Balaji, Shyam; Spannowsky, Michael; Tamarit, Carlos
Abstract
In first-order cosmological phase transitions, the asymptotic velocity of expanding bubbles is of crucial relevance for predicting observables like the spectrum of stochastic gravitational waves, or for establishing the viability of mechanisms explaining fundamental properties of the universe such as the observed baryon asymmetry. In these dynamic phase transitions, it is generally accepted that subluminal bubble expansion requires out-of-equilibrium interactions with the plasma which are captured by friction terms in the equations of motion for the scalar field. This has been disputed in works pointing out subluminal velocities in local equilibrium arising either from hydrodynamic effects in deflagrations or from the entropy change across the bubble wall in general situations. We argue that both effects are related and can be understood from the conservation of the entropy of the degrees of freedom in local equilibrium, leading to subluminal speeds for both deflagrations and detonations. The friction effect arises from the background field dependence of the entropy density in the plasma, and can be accounted for by simply imposing local conservation of stress-energy and including field dependent thermal contributions to the effective potential. We illustrate this with explicit calculations of dynamic and static bubbles for a first-order electroweak transition in a Standard Model extension with additional scalar fields.
Citation
Balaji, S., Spannowsky, M., & Tamarit, C. (2021). Cosmological bubble friction in local equilibrium. Journal of Cosmology and Astroparticle Physics, 2021(03), Article 051. https://doi.org/10.1088/1475-7516/2021/03/051
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 29, 2021 |
Online Publication Date | Mar 16, 2021 |
Publication Date | 2021-03 |
Deposit Date | Sep 8, 2021 |
Publicly Available Date | Mar 16, 2022 |
Journal | Journal of Cosmology and Astroparticle Physics |
Electronic ISSN | 1475-7516 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 2021 |
Issue | 03 |
Article Number | 051 |
DOI | https://doi.org/10.1088/1475-7516/2021/03/051 |
Public URL | https://durham-repository.worktribe.com/output/1235479 |
Files
Accepted Journal Article
(882 Kb)
PDF
Copyright Statement
This is the Accepted Manuscript version of an article accepted for publication in Journal of Cosmology and Astroparticle Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1475-7516/2021/03/051
You might also like
Effective limits on single scalar extensions in the light of recent LHC data
(2023)
Journal Article
Quantum fitting framework applied to effective field theories
(2023)
Journal Article
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Quantum walk approach to simulating parton showers
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search