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Abstract
In �rst-order cosmological phase transitions, the asymptotic velocity of expanding bubbles is of crucial relevance for predict-

ing observables like the spectrum of stochastic gravitational waves, or for establishing the viability of mechanisms explaining
fundamental properties of the universe such as the observed baryon asymmetry. In these dynamic phase transitions, it is gen-
erally accepted that subluminal bubble expansion requires out-of-equilibrium interactions with the plasma which are captured
by friction terms in the equations of motion for the scalar �eld. This has been disputed in works pointing out subluminal
velocities in local equilibrium arising either from hydrodynamic e�ects in de�agrations or from the entropy change across the
bubble wall in general situations. We argue that both e�ects are related and can be understood from the conservation of the
entropy of the degrees of freedom in local equilibrium, leading to subluminal speeds for both de�agrations and detonations.
The friction e�ect arises from the background �eld dependence of the entropy density in the plasma, and can be accounted
for by simply imposing local conservation of stress-energy and including �eld dependent thermal contributions to the e�ective
potential. We illustrate this with explicit calculations of dynamic and static bubbles for a �rst-order electroweak transition in
a Standard Model extension with additional scalar �elds.

I. INTRODUCTION

The hot plasma in the early universe may have gone
through di�erent phase transitions which contributed to
forge the properties of the world around us. Classical
examples are the phase transition in Quantum Chromo-
dynamics and, if the temperature at early times was large
enough, the electroweak phase transition. Though both
of the former are of the crossover type in the Standard
Model (SM) [1, 2], �rst-order phase transitions remain an
intriguing possibility which can be realized in SM exten-
sions. Such transitions, which proceed through the nucle-
ation and subsequent expansion of bubbles of the thermo-
dynamically preferred phase, are particularly interesting
due to the enhanced deviations from equilibrium dur-
ing the transition. The loss of spatial homogeneity and
isotropy due to the colliding bubble walls can source a
stochastic background of gravitational waves [3, 4] (see
Ref. [5] for a review) amenable to experimental con�r-
mation by future space-borne interferometers like the
Big Bang Observer (BBO) [6], the Deci-hertz Interfer-
ometer Gravitational Wave Observatory (DECIGO) [7]
and LISA [8]. On the other hand, if the electroweak
phase transition were to be of �rst-order, the former in-
homogeneities coupled with novel CP-violating interac-
tions could lead to the generation of the observed baryon
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asymmetry through the mechanism of electroweak baryo-
genesis [9] (for a review, see Ref. [10]).
The predictions of the physical e�ects of a �rst-order

phase transition, such as the power emitted in gravita-
tional waves or the generated baryon asymmetry, cru-
cially depend on the velocity reached by the bubbles ex-
panding through the plasma. While gravitational wave
emission is enhanced if the velocity becomes nearly lu-
minal, the generation of the baryon asymmetry requires
slow bubbles that allow for the di�usion of the particles
re�ected in a CP-violating manner by the advancing bub-
ble. This enables the CP excess in front of the bubble
wall to be converted into baryon number asymmetry by
sphaleron interactions [11].
For these reasons the estimation of bubble velocities

has been the subject of intense study, centered on the
understanding of the friction e�ects between the bubbles
and the plasma which may slow the advance of the for-
mer. Studies based on kinetic theory [12�15], �uctuation-
dissipation arguments [16, 17] or non-equilibrium quan-
tum �eld theory [18] suggest a velocity-dependent friction
force caused by deviations from equilibrium interactions
in the vicinity of the bubble wall. While most analyses
are based on evaluating the rate of momentum transfer
integrated across the bubble wall, the ensuing friction
force is usually incorporated into the local equation of
motion of the scalar �eld. The kinetic-theory approach
or equivalent methods provide �rst-principle estimates of
friction e�ects by using Boltzmann equations to estimate
the out-of-equilibrium e�ects. Investigations mostly fo-
cusing on SM extensions have recently been performed
[18�22]. Many studies consider an e�ective friction term
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proportional to a phenomenological friction parameter η
[23�25], which is sometimes �xed to match the results
from the Boltzmann approach [26�29].
The general expectation is that there is no friction in

local equilibrium [30]. Furthermore, it has been argued
that the friction force saturates at leading order for high-
velocities, such that near-luminal bubble propagation, or
�runaway� behaviour is a generic possibility [20, 31]. This
was �rst disputed in [32], in which it was argued that hy-
drodynamic e�ects in de�agrations can lead to a heating
of the plasma in front of the bubble wall, which a�ects the
force driving the expansion of the bubble. More recently,
Ref. [33] showed that in local equilibrium the friction
force per unit area follows the relationship

|~Ffriction|
A

= (γ2(vw)− 1)T |∆s|, (1)

where γ(vw) is the Lorentz contraction factor of the
asymptotic bubble wall velocity vw, and ∆s the change
in entropy density across the bubble. This force keeps
growing with the velocity and prevents the bubbles from
runaway behaviour.
The analysis of Ref. [33] was based on integrating the

stress energy momentum tensor across the bubble wall
and assuming a constant temperature and �uid veloc-
ity throughout. However, this does not exemplify how
friction arises in the local dynamical equations for the
scalar �eld and the plasma, or how to consistently com-
pute both the bubble velocity and the associated entropy
change. Furthermore, it was not clari�ed how the results
may be related to the hydrodynamic e�ects investigated
in [32]. In particular, while the latter were expected to
only take place in de�agrations, the subluminal speeds
found in Ref. [33] are expected regardless of whether the
bubbles expand as de�agrations and detonations.
The goal of this paper is to con�rm that indeed local

equilibrium is compatible with subluminal bubble expan-
sion, clarify the local origin of the friction forces and the
relation to the hydrodynamic e�ect of Ref. [32], and pro-
vide consistent estimates of bubble velocities. Rather
than arising from additional terms in the scalar's equa-
tion of motion, the friction-like behaviour in the presence
of local equilibrium is caused by the �eld-dependence of
the local entropy and enthalpy density itself, which en-
ters into the hydrodynamic equations of the plasma. As
the scalar bubble expands it enforces local entropy and
enthalpy changes in the plasma near the bubble wall, and
conservation of stress-energy and the total entropy imply
that the bubble must slow down. We will illustrate this
e�ect quantitatively in an extension of the SM with ad-
ditional scalars. We estimate bubble-wall velocities both
from time-dependent solutions with radial symmetry, or
by �nding planar solutions to the static equations in the
wall frame and matching them to consistent hydrody-
namic pro�les away from the wall. The latter allows to
make contact with the treatment of Ref. [32], though as a
novelty we �nd pro�les corresponding to subluminal det-
onations, in accordance with the expectations of Ref. [33]

The paper is organized as follows. In section II we
review the di�erential equations for the scalar �eld plus
plasma, arising simply from imposing the conservation
of the stress-energy tensor. Next, in section III we intro-
duce the model used to illustrate the friction-like e�ects.
Section IV presents the results for dynamical de�agration
solutions with radial symmetry, while �nally in sections V
and VI we consider the asymptotic regime of constant
velocity expansion and solve for static bubble pro�les in
the wall frame compatible with consistent de�agration
(section V) and detonation (section VI) solutions of the
plasma equations away from the bubble. Finally, conclu-
sions are drawn in section VII.

II. DIFFERENTIAL EQUATIONS FOR BUBBLE

PROPAGATION

We consider a system involving a real scalar �eld in-
teracting with a thermal plasma. The stress-energy mo-
mentum tensor is given by the sum of contributions from
both sectors

Tµν = Tµνφ + Tµνp , (2)

where φ and p denote the scalar �eld and the plasma
respectively. We assume an ordinary scalar with a po-
tential V (φ) plus a plasma modelled by a perfect �uid,
which can be justi�ed as the leading order approxima-
tion in an expansion in terms of gradients of the plasma
velocity. As such, we have

Tµνφ = ∂µφ∂νφ− ηµν
(

1

2
∂ρφ∂

ρφ− V (φ)

)
,

Tµνp = (ρ+ p)uµuµ − ηµνp = ω uµuµ − ηµνp.
(3)

In the above equations, uµ with µ = 0, 1, 2, 3 represents
the �uid's four-velocity, while p, ρ and ω = ρ + p cor-
respond to the pressure, energy density and enthalpy of
the plasma. We assume the signature (+,−,−,−) for
the Minkowski metric and work in natural units with
c = 1. In terms of the plasma velocity vector vi with
i = 1, 2, 3, its magnitude v ≡

√∑
i(v

i)2 and the Lorentz

factor γ(v) = 1/
√

1− v2, the 4-velocity can be written
as uµ = γ(v)(1, v1, v2, v3). Covariant conservation of the
stress-energy momentum tensor in a cosmological back-
ground implies ∇µTµν = 0. Under the typical assump-
tion of a phase transition that proceeds much faster than
the Universe's expansion, one may neglect the cosmolog-
ical scale factor and replace covariant derivatives by ordi-
nary ones. Doing so, the terms in ∇µTµν involving ∂νφ
are proportional to the scalar �eld's equation of motion
in the plasma background and must vanish separately.
This yields

2φ+
∂

∂φ
(V (φ)− p) = 0,

∂µ(ωuµuν − ηµνp) +
∂p

∂φ
∂νφ = 0.

(4)
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As initial time boundary conditions for the plasma, a
�uid at rest with a temperature given by the nucleation
temperature Tnuc at which the bubble formation rate
overcomes the Hubble expansion should be considered.
For the scalar �eld, a perturbation of the critical bub-
ble that extremizes the three-dimensional integral of the
Lagrangian for static �elds should be set as an initial
condition.
One recognizes the �rst equation in Eq. (4) as the equa-

tion of motion of the scalar �eld at �nite temperature.
Indeed, under the assumption of local thermal equilib-
rium with temperature T , the pressure is related to the
free energy, which itself is related to the thermal cor-
rections VT to the e�ective potential p = −VT . Hence,
we may denote V (φ)−p = V (φ, T ) and recover the stan-
dard equation of motion at �nite temperature. Equations
equivalent to (4) were obtained in Ref. [23], where the au-
thors expressed the total pressure as a radiative contri-
bution proportional to T 4 and the additional �eld depen-
dent terms. We make no such distinction here, thus the
simpler notation. Furthermore, the authors of Ref. [23]
added a phenomenological friction term without spoiling
stress-energy conservation. This corresponds to substi-
tuting the r.h.s. of the two equations in (4) by −η uµ∂µφ
and η uµ∂µφ∂

νφ, respectively, where η is a friction pa-
rameter.
In the second equation of (4), it should be noted that

the terms involving �eld derivatives of the pressure can-
cel, but the terms proportional to ∂ω/∂φ survive. Under
local thermal equilibrium, one can relate ω to the en-
tropy density s = ω/T , so that the terms proportional
to ∂ω/∂φ account for local entropy changes across the
bubble wall. It is precisely these terms which give rise to
friction-like e�ects and subluminal bubble propagation.
In fact, this connection to entropy changes across the
bubble wall matches the result (1) shown in Ref [33].
The former approach directly assumed a steady state ex-
pansion, planarity and a common temperature on both
sides of the bubble. Our treatment goes beyond the for-
mer simpli�cations by incorporating the friction-like ef-
fects at the level of the local �eld and plasma equations.
We note that standard thermodynamic identities allow

the computation of the entropy density in terms of the
pressure or equivalently VT , whose one-loop expression
for a general model is a standard result of thermal �eld
theory

ω(φ, T ) = T s =T
∂p

∂T
= −T ∂VT (φ, T )

∂T
. (5)

This considerably simpli�es the calculation of backreac-
tion e�ects under the assumption of local equilibrium,
and allows a quick recovery of the lengthier derivations
of entropy in e.g. Ref. [33].
It is worth mentioning that the usual friction terms pa-

rameterized by η lead to a violation of the conservation of
the total entropy of the universe, and thus correspond to
out-of-equilibrium, irreversible processes. Indeed, adding
the friction term to the second equation in (4), contract-

ing with uν and using the thermodynamic identities of
Eq. (5) leads to

∂µ(suµ) =
η

T
(uµ∂µφ)2. (6)

Integrating the former equation over a region of space-
time between times ti and tf , applying the divergence
theorem and assuming a �uid at rest at the boundary
gives S(t = tf ) − S(t = ti) =

∫
d4x ηT (uµ∂µφ)2, where

S is the total entropy in the spatial volume.1 In local
equilibrium one expects conservation of S, and thus it is
consistent to take η = 0. Nevertheless, as we will show
in the following sections, friction-like behaviour persists.
As the expansion is reversible due to the conservation of
entropy, the e�ective force slowing down the bubble is
non-dissipative, and we will refer to it as a backreaction
as opposed to a friction force. Its e�ect will be shown
in two ways: by solving the dynamical equations (4),
and by directly looking for solutions of their static limit
so as to constrain the possible wall velocities [23]. In-
deed, a large bubble propagating with constant speed
has a steady pro�le up to subleading curvature e�ects.
As such, static solutions to (4) that capture the �eld and
�uid near the wall can directly be searched for. For a
bubble propagating in the z direction with vz ≡ v, the
static equations can be written as [23]

− φ′′(z) +
∂

∂φ
(V (φ, T )) = 0,

ωγ2v2 +
1

2
(φ′(z))2 − V (φ, T ) = c1, ωγ2v = c2,

(7)

where c1, c2 are constants which can be traded for the
temperature T+ and velocity v+ in front of the bubble
wall. We assume a bubble propagating towards posi-
tive z, so that in the wall frame the �uid velocity v+

is negative. The last two equations in (7) can be used
to express the temperature and velocity in terms of the
Higgs �eld and its derivatives, which then leaves a sin-
gle equation for the scalar �eld with a non-standard po-
tential V̂ (φ, φ′) = V (φ, T (φ, φ′)) that depends on φ′(z).
We note that the solutions T (φ, φ′), v(φ, φ′) of the last
identities in Eq. (7) can be multi-valued, and due to the
quadratic dependence on v and quartic dependence on T
one can expect two branches of physical solutions with
T > 0, which we will denote with �high� and �low�, giving
larger or smaller values of |v|, respectively. Due to the
dependence on φ′, the �energy� function

E ≡ 1

2
φ′(z)2 + V̂high,low(φ, φ′) (8)

is only approximately conserved. The boundary condi-
tions are φ′(z) = 0, z → ±∞, and φ → 0, z → ∞. For

1 Note that s is the entropy density in the plasma rest frame, and

for a general frame one has to account for the Lorentz contraction

in the direction of propagation.
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numerical calculations one may impose analogous bound-
ary conditions at a �nite but large z. Given v+ < 0 and
T+, the former boundary conditions can be satis�ed only
for a speci�c choice of the value φ−(v+, T+) of the �eld
behind the wall, leading to a prediction of the �uid veloc-
ity v−(v+, T+) behind the bubble. On physical grounds,
one expects the �eld far away from the bubble setting
into a minimum of the �nite-temperature e�ective po-
tential. Then from Eq. (7) it follows that one should
require φ′′(z) = 0, z → ±∞, as enforced in Ref. [32].
This reduces the ambiguity of the solutions to a single
parameter, e.g. T+.
The static solutions for the �eld, velocity and temper-

ature pro�les obtained as before have to be matched to
time-dependent pro�les away from the bubble wall. Far
away in front of the wall, one should recover T = Tnuc,
which �xes the ambiguity of the static solution for the
wall once it is matched to a hydrodynamic pro�le. The
time-dependence of the latter is expected because, with
the scalar �eld tending to a constant, the lack of dimen-
sionful scales beyond the temperature in the leading con-
tributions to the plasma equations suggests �self-similar�
solutions depending on ξ ≡ |~x|/t [34]. Under this as-
sumption, from the second line in Eq. (4) one can derive
the equation

ξ − v
ω

∂ξρ− 2
v

ξ
− (1− γ2v(ξ − v))∂ξv = 0,

1− vξ
ω

∂ξp− γ2(ξ − v)∂ξv = 0.

(9)

The possible types of solutions of the above relativistic
�uid equations are well known [25, 34]. One expects two
types of solutions: de�agrations �in which the bubble
expands with a velocity below the speed of sound in the
plasma c2s = ∂T p/∂T ρ, with the �uid heating up and
compressing in front of the bubble and at rest behind
it� and detonations �in which the expansion velocity is
above cs, the �uid is unperturbed in front of the bubble,
but heats up behind it.
For de�agration pro�les, since the �uid is expected to

be at rest behind the bubble one can obtain the wall
velocity vw in the �uid frame from the static wall solution
as vw = −v−. The �uid velocity in front of the bubble
in the �uid frame is then obtained from a Lorentz boost
as vfluid,+ = (v+ − v−)/(1 − v+v−). Together with the
temperature T+, this gives boundary conditions for the
plasma equations (9) to be solved in front of the bubble,
T+ must be �xed so as to get T = Tnuc when the velocity
drops to zero in front of the bubble.
For detonation pro�les, with the �uid unperturbed in

front of the bubble one must impose T+ = Tnuc. The
static wall solution then gives unique boundary condi-
tions T = T−, vfluid,− = (v−−v+)/(1−v+v−) for Eqs. (9)
behind the bubble.
The task of �nding physical solutions can be done as

follows: �rst, one chooses a value of T+ (= Tnuc for det-
onations). For de�agrations, keeping T+ �xed one may
scan over di�erent values of v+, solving the scalar equa-

tion with the pseudopotential V̂ , as well as Eqs. (9) away
from the bubble. For the scalar bubble pro�le one may
use a shooting method, imposing φ′(zmin) = 0, and sam-
pling φ(zmin) until one has φ(zmax) → 0, φ′(zmax) → 0.
By construction, as φ = 0 is a local minimum, one will
have φ′′(zmax) → 0. One can then sample di�erent val-
ues of v+ until one recovers the nucleation temperature at
large z. This however does not guarantee that the physi-
cal condition φ′′(z)→ 0 is attained for small z; to achieve
this one may repeat the above calculations for di�erent
values of T+ until φ′′(zmin) is minimized. For detona-
tions, with T+ = Tnuc one can directly scan for values of
v+ until φ′′(zmin) is minimized. The approximate conser-
vation of E in Eq. (8) can be used to simplify the search
for physical solutions, since if E were exactly conserved,
the scalar pro�le of the physical solution would interpo-
late between two exactly degenerate minima. Hence the
physical solutions have values of T+, v+ for which one

gets a pseudopotential V̂ with near degenerate minima.
In a planar approximation the calculation gets simpli-

�ed because there is no need to solve (9). In the pla-
nar regime the 1/ξ term in Eqs. (9) can be dropped and
one gets solutions with constant velocity and pressure,
which simpli�es the treatment. However, satisfying the
boundary conditions of �uid at rest far from the wall im-
plies the appearance of discontinuity fronts across which
the velocity drops to zero: a shock front in front of the
bubble in the case of de�agrations, and a similar dis-
continuity behind the bubble for detonations. One can
relate quantities across the front by imposing continuity
of the stress-energy tensor. In the case of de�agrations,
equating the �uid velocity between wall and shock front
deduced from the solutions of (7) and from the shock
constraints leads to the condition

vfluid,+ =
v+−v−
1−v+v−

=

√
3
(
T 4

+−T 4
nuc

)√(
T 4
nuc

+3T 4
+

) (
3T 4

nuc
+T 4

+

) . (10)
For a given T+, the above can be used to �x the free
parameter v+. In the case of detonations, there is no
additional constraint as one has T+ = Tnuc, but within
the planar approximation the temperature Tin inside the
bubble beyond the detonation front can be obtained from
the following equations,

vfluid,− =
v−−v+

1−v+v−
=

√
3
(
T 4

in−T 4
−
)√(

T 4
in + 3T 4

−
) (

3T 4
− + T 4

in

) . (11)

To make contact with the results of Ref. [33], let us
point out that the friction force (1) can be derived di-
rectly from the second identity in Eq. (7) evaluated at
both sides of the wall (where φ′(z) = 0), once one identi-

�es the backreaction pressure |~Fback|/A with |∆V (φ, T )|,
and under the approximation of a constant temperature
and �uid velocity, the latter identi�ed with −vw. In real-
ity, the situation is more complicated as the temperature
and velocity change across the bubble, a more complete
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result is

|~Fback|
A

= |∆{γ2v2ω}| = |∆{(γ2 − 1)Ts}|. (12)

The planar approximation can be used to gain an intu-
itive understanding of the reasons behind the subluminal
propagation speed. In either de�agration or detonation
solutions, the interior of the bubble has lower entropy
density than the �uid before the transition. This sim-
ply follows from the fact that the phase transition makes
some particles massive, while the entropy in the plasma is
always dominated by the contribution from the relativis-
tic degrees of freedom. Recall that in thermal plasma,
one can write

s =
2π2

45
g?sT

3, (13)

where g?s denotes the the number of e�ective relativis-
tic degrees of freedom. Inside the bubble g?s drops, and
with it s. For the degrees of freedom in local equilib-
rium, the total entropy has to be conserved. With the
entropy decrease due to the presence and expansion of
the bubble, there has to be a compensating entropy in-
crease. Given Eq. (13), this can be achieved if parts
of the �uid heat up. This is precisely what happens in
detonations and de�agrations, in which the �uid heats
up behind and in front of the bubble respectively. In
the planar approximation, one simply expects a deto-
nation/de�agration shell with constant increased tem-
perature Tshell �corresponding in the notation above to
T−/T+ for detonations/de�agrations� and with an addi-
tional shell front propagating with constant velocity vfront

behind/ahead of the bubble wall. The conservation of the
total entropy within this approximation then gives

vw = vfront

(
|∆γs|front

|∆γs|wall

)1/3

, (14)

where we assumed �uid shells with radial symmetry and
radii Rw = vwt, Rfront = vfrontt. Using the stress-energy
conservation relations across the front, one can relate
vfront to the temperatures at each side of the front,

vfront =


1√
3

(
3T 4

−+T 4
in

3T 4
in+T 4

−

)1/2

detonations

1√
3

(
3T 4

++T 4
nuc

3T 4
nuc+T 4

+

)1/2

de�agrations.
(15)

One can also express the entropy increase across the front
in terms of the same temperatures using Eqs. (10), (11)
and (13). Subliminal speeds are generally expected for
moderate heating in the compression shell.
Above, we related the subluminal propagation speeds

to a heating e�ect associated with the conservation of
the entropy of the degrees of freedom in local equilib-
rium. A heating e�ect was already connected to sublimi-
nal speeds in local equilibrium in the case of de�agrations
in Ref. [32], though with di�erent argumentation. It was

noted that such a heating in front of the bubble wall
could lead to a zero driving force, incorporating the ef-
fects of pressure and the zero T potential di�erence, for
the bubble expansion. In view of the arguments provided
in Ref. [33] (which, as seen above, follows from the static
equations (7), which were also solved in Ref. [32]), one
does not expect an exactly zero driving force, but a com-
pensation with a backreaction force due to the entropy
changes across the bubble. Yet the heating e�ect �rst
noted in Ref. [32] is de�nitely connected with subluminal
propagation speeds, and can be understood from entropy
conservation and extended to detonations.

III. EXAMPLE MODEL

To illustrate the friction e�ects, we consider an ex-
tension of the SM by an N -dimensional multiplet χ of
complex scalar singlets with U(N)-preserving couplings,
including interactions with the Higgs Φ:

L ⊃ −m2
HΦ†Φ− λ

2
(Φ†Φ)2 −m2

χχ
†χ

−λχ
2

(χ†χ)2 − λHχΦ†Φχ†χ . (16)

Now, all that is required for writing down the equations is
p = −VT . For simplicity of the numerical implementation
we use a high-temperature expansion up to terms of order
T , which still captures the nontrivial �eld dependence

p(h, T ) =
π2T 4

90
(g∗,SM + 2N)− T 2

(
h2

(
y2
b

8
+

3g2
1

160

+
3g2

2

32
+
λ

8
+
NλHχ

24
+
y2
t

8

)
+
m2
H

6
+
Nm2

χ

12

)

− T

12π

(
−3

4
(g2h)

3 − 3h3

8

(
3g2

1

5
+ g2

2

)3/2

− 3

(
h2λ

2
+m2

H

)3/2

−
(

3h2λ

2
+m2

H

)3/2

−2N

(
h2λHχ

2
+m2

χ

)3/2
)
.

(17)

In the above equation, we have assumed a background for
the neutral component of the Higgs h. g?,SM ∼ 106.75
denotes the number of e�ective relativistic degrees of free-
dom in the SM plasma, while g1 and g2 are the hyper-
charge and weak gauge couplings in the normalization
compatible with Grand Uni�cation, and yt, yb are the
bottom and top quark Yukawa couplings respectively.
For the couplings and parameters beyond those of the
SM we use N = 4 or N = 2, m2

S/m
2
W = 0.0625,

λχ = 0.085, λHχ = 0.85. This gives a �rst-order elec-
troweak phase transition with critical and nucleation
temperatures around Tc = 115.952 GeV, Tnuc = 115.297
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GeV for N = 4 and Tc = 126.376 GeV, Tnuc = 126.229
GeV for N = 2. The nucleation rate can be estimated by
minimizing the three-dimensional integral S3[h, T ] of the
�nite-temperature action evaluated at static con�gura-
tions h(r) with radial symmetry, we use the standard cri-
terion for nucleation S3[hnuc(r), Tnuc]/Tnuc ∼ 140, where
hnuc(r) is the critical �eld con�guration or bubble.

IV. SOLVING FOR TIME-DEPENDENT SOLU-

TIONS WITH A NEURAL NETWORK

In this section we focus on solving the time-dependent
equations (4) for the above parameter choices, with N =
4. We assume radial symmetry, with the velocity �eld
having a radial component vr ≡ v, and with v, h, T being
functions of r, t. As initial conditions we use T (r, t =
0) = Tnuc, v(r, t = 0) = 0, while for the Higgs we use the
critical bubble perturbed with a nonrelativistic boost (as
otherwise the bubble would remain static): h(r, t = 0) =
hnuc(r), ∂th(r, t)|t=0 = −δh′nuc(r), with δ = 0.2.

A. Setup

In order to �nd time-dependent solutions to Eqs. (4)
we follow the technique pioneered in Ref. [35] and imple-
ment an arti�cial neural network (NN). The method re-
lies on recasting the partial di�erential equations (PDEs)
as an optimization procedure �for which NN are uniquely
suited� of the form L̂ = 0, where L̂ is a positive loss
function to be minimized by the NN. The network is
constructed by considering an initial layer of 2 inputs
ξn = (r, t) that are to be mapped to a �nal layer with
3 outputs Nm which are to be approximations of the so-
lutions ϕm = (v, h, T ) to the di�erential equations. The
inputs are mapped to successive hidden layers of k ele-
ments, from the combined action of linear transforma-
tions between each layer and the action of a real acti-
vation functions, a �nal linear mapping gives the �nal
outputs. For example, for one hidden layer one has

Nm(~ξ, {w, b}) =
∑
k,n

wfmkg(whknξn + bnk ) + bfm, (18)

where g is the activation function, ωhmk, ω
f
mk are known

as �weights�, and bh, bf are the �biases�. A set of weights
and biases which minimize the loss function associated
with the system of di�erential equations are searched for.
Writing the latter in the form

Fm(~ξ, ϕn(~ξ), ∂pqφn(~ξ)) = 0, (19)

with m,n ∈ {1, 2, 3}, p, q ∈ {1, 2}, and assuming bound-

ary conditions (BCs) for boundary points ~ξb of the form

Ba(~ξb, ϕn(~ξb), ∂
p
qφn(~ξb)) = 0, (20)

the loss function is constructed from considering a dis-

crete set of �training points� ~ξi including boundary points
~ξb,j , and evaluating Fm and Ba on them

L̂({w, b}) =
∑
i,m

cmFm(~ξi, Nn(~ξi), ∂
j
kNn(xi))

2

+
∑
j,a

daBa(~ξb,j , Nn(~ξb,j), ∂
j
kNn(~ξb,j))

2. (21)

Above, the derivatives of the network outputs can be ob-
tained analytically from (18). The coe�cients cm and da
represent relative weightings for each PDE and BC, re-
quired to ensure that all PDEs and BCs contribute com-
parably to the loss function. We implement the NN with
13 hidden layers with 10 nodes each, with tanh activa-
tion functions. We choose the training examples from an
evenly spaced 80× 80 grid. We use the pytorch package
along with the Adam optimizer for the NN gradient de-
scent. To avoid getting trapped in sub-optimal local min-
ima of the smooth loss function, we take care to reduce
the learning rate through cosine annealing with warm
restarts. For fast convergence of our solution, we �rst
pretrain the NN with a template solution implemented
as a boundary condition for low t. This is obtained using
Wolfram Mathematica's PDE solver, which is only able
to provide reliable solutions for a small time interval. Af-
ter the NN is in the correct vicinity of solution, we remove
the pretrained template from the loss function and train
according to (21). This allows reliable solutions for time
intervals that cannot be reached with the Mathematica

solver.

B. Dynamic transition results

From the previous NN setup we were able to obtain
solutions in which the individual loss functions Fm in di-
mensionless units (obtained by rescaling quantities with
appropriate powers of the W mass mW ≈ 80 GeV) take
values . 5×10−3. We show the resulting dynamical pro-
�les of h, T, v in Fig. 1 as a function of r in dimensionless
units for 5 equally spaced timestamps between t = 0 and
t = 50/mW . We note that the Mathematica solver was
only able to compute accurate solutions for t . 15/mW .
The scalar pro�le settles to a slow expansion, while the
velocity and temperature pro�les show the formation of a
faster propagating front, in accordance with the expecta-
tions of a de�agration solution with self-similar �uid be-
haviour. Con�rming the latter would require extending
the solutions to even later times, a more e�cient means is
to directly look for static wall solutions with consistent
hydrodynamic pro�les as we show in the next section.
By following points with constant h(r, t) = 0.5 we can
estimate the bubble's position and velocity, the latter
is plotted with a solid line in Fig. 2, which shows that
the bubble's velocity settles to . 0.25. This is in con-
trast to the result, illustrated with a dashed line, when
the terms proportional to ∂ω/∂φ are omitted in Eq. (4).
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Figure 1: Dynamical evolution of h, T and v in dimensionless
units. The curves from left to right, red to blue, correspond
to time steps from tmW = [0, 50] with mW ∆t = 10.
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0.5
0.6
0.7
0.8

w

Figure 2: Bubble velocity versus time in dimensionless units,
including the e�ect of the �eld dependence of the enthaply
(solid line) or without it (dashed line).

In this case the bubble velocity quickly approaches the
speed of light. This con�rms our observation that the
�eld-dependence of the enthalpy is responsible for the
friction-like behaviour.

V. STATIC PLANAR BUBBLE PROFILES AND

CONSISTENT DEFLAGRATIONS

In this section we report the results of searching for
de�agration solutions with the same parameters as in
the previous section, assuming a static solution near the
bubble wall that solves Eq. (7), and either implementing
the hydrodynamic constraints of Eqs. (10), (11) apply-
ing in the planar regime, or matching with solutions to
the radial hydrodynamic equations (9). Without impos-
ing the boundary condition φ′′(z) → 0, we have found
a one-parameter branch of solutions satisfying all con-
straints. These family of con�gurations corresponds to
the �low� branch of solutions for the temperature pro�les
T (h, h′), and when solving Eqs. (9) we �nd acceptable
con�gurations for T+ ≤ Tmax

+ = 116.471 GeV. The upper
value of T+ corresponds to the unique solution satisfying
the physical constraint φ′′(z) → 0 at large |z|, and hav-
ing a wall velocity vw = 0.496. We note that with our
method it is challenging to exactly recover φ′′(zmin) = 0
because we use a �nite interval of z, and moreover we
�nd an exponential sensitivity of φ′′(zmin) to the value
of T+ near Tmax

+ , with φ′′(zmin) approaching zero with
a slope that seems to grow towards in�nity. The former
results are compatible with the dynamical results of the
previous section, in which temperatures remained below
the above value of Tmax

+ (see Fig. 1) and the wall veloc-
ity approached 0.25. The lower velocity in the dynamical
simulation can be due to the e�ect of considering a radial
expansion, as opposed to the planar approximation used
for �nding the static wall pro�le. It could also be that the
planar wall velocity is only reached at much later times
than the ones covered by the dynamical simulation of the
previous section, note that the slope of the wall velocity
in Fig. 2, though very small at later times, seems to be
nonzero. The wall velocity vw, the exact backreaction
force of Eq. (12) and the approximation of Eq. (1) found
in Ref. [33] are illustrated in Fig. 6, which also shows the
results when, instead of solving Eqs. (9), one imposes the
planar constraints of Eq. (10). We �nd qualitative agree-
ment with Eq. (1) up to deviations below 70%, which are
due to the changes of T and v across the bubble.

In Fig. 3 we illustrate the pseudopotential V̂low(h, h′)
evaluated at constant con�gurations with h′ = 0, for
three di�erent values of v+ and the value of T+ = 116.471
GeV giving the smallest |φ′′(zmin)| for zmin = −25/mW .
The fact that for this �nite interval in z we don't achieve
exactly φ′′(zmin) = 0 is re�ected by the slight non-
degeneracy of the minima of the pseudopotential. We
illustrate the pro�les for solutions near T+ = Tmax

+ in
Figs. 4 and 5.

The physical solution with φ′′(z)→ 0 at large |z| would
correspond to the solutions that were searched for in
Ref. [32]. The solution with a minimal value of φ′′(zmin)
found here satis�es approximately the constraints derived
in the former reference from requiring a zero driving force
(although in fact there is a driving force which is exactly

compensated by a nonzero ~Fback, as illustrated in Fig. 6).
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Figure 3: Pseudopotential V̂low(h, h′ = 0) for T+ = 116.471
GeV, with v+ taking the values (from top to bottom): -0.47,
-0.4809, -0.50. The central choice of v+ gives a hydrodynamic
pro�le in which T = Tnuc when the �uid velocity drops to
zero, and with a minimal value of |φ′′(zmin = −25/mW )| in
our numerical scans.
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Figure 4: De�agration pro�les of the Higgs, temperature and
velocity across the bubble wall for T+ = Tmax

+ .

De�ning the parameter

αc =
lc

4a+T 4
c

, (22)

where lc = T∂T (V (hc, T ) − V (0, T )|T=Tc
) is the latent

heat of the transition (with hc the nontrivial VEV at the
critical temperature), and with a+ = π2/30(g∗,SM +2N)
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0.000
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Figure 5: Hydrodynamic pro�les for the �uid temperature
and velocity in front of the bubble wall corresponding to the
bubble pro�les in Fig. 4.

related to the T 4 coe�cient of the pressure in Eq. (17),
the following identities from Ref. [32] are satis�ed

v2
w ∼

1

6αc
log

Tc
Tnuc

,

log
Tc
TN

<O(1)

(√
αc
2
− 3

10
αc −

1

5
α3/2
c

)
.

(23)

The static pro�les for the scalar have a typical width
as in Fig. 1, L ∼ 20/mW ∼ 30/T . The local equi-
librium approximation is expected to hold if L/γ(vw)
is above the mean free path λmfp of particles in the
plasma. With vw . 0.3 the Lorentz contraction fac-
tor is of order one, while Ref. [13] estimated λmfp .
m̂2
W (T )/(10πα2

wT
3), where m̂2

W (T ) is the temperature-
dependent W mass, and αw = g2

2/(4π). In our bubbles,
we have h . 1.5mW ∼ T , giving m̂2

W (T ) . T 2/9 and
λmfp . 3/T . Hence the local equilibrium approximation
is indeed justi�ed.

VI. STATIC PLANAR BUBBLE PROFILES AND

CONSISTENT DETONATIONS

In the following we apply the same treatment of the
previous section to the search of consistent detonation
pro�les. Given the inverse proportionality between the
wall-velocity and the increase of entropy density across
the bubble in Eq. (14), one expects higher wall velocities
if the phase transition increases the mass of a lower num-
ber of particles. This also �ts with the proportionality of
the backreaction force to the increase in entropy density
in Eq. (12). As for the choice of couplings described in
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Figure 6: Upper plot: Bubble velocity as a function of T+

for the static solutions compatible with consistent de�agra-
tions, and without imposing φ′′(z) → 0 far away from the
bubble. The blue curve gives the results when solving the
hydrodynamic equations (9) away from the bubble, while the
grey line gives the results in the planar approximation. Lower
plot: Backreaction force as a function of the bubble wall ve-
locity (solid lines) compared to its approximation in Eq. (1)
(dashed lines). The curves in blue/grey correspond to the hy-
drodynamic equations with radial/planar symmetry. In both
plots, the physical solution with φ′′(z)→ 0 at large |z| corre-
sponds to the ending points of the blue curves, or the turning
points of the grey curves.

Section III we found de�agration solutions for N = 4, we
hope to �nd larger wall velocities (and possible detona-
tion solutions) for N = 2.

For this choice we �nd no acceptable de�agration pro-
�le with the techniques of the previous section, despite
the fact that the parameters satisfy the condition in the
second line of Eq. (23) derived in Ref. [32] for de�agra-
tion pro�les in local equilibrium. On the other hand, by
choosing the �high� branch of solutions of T (h, h′), we
�nd acceptable detonation pro�les. The solutions with
|φ′′(zmin)| → 0 are found for v+ = −0.723 (and of course
T+ = Tnuc = 126.229 GeV forN = 2), giving a supersonic
wall velocity vw = 0.723. This can be connected to a det-
onation pro�le behind the wall that solves Eq. (9) with
the �uid velocity dropping to zero as expected. Fig. 3
shows the pseudopotential V̂high(h, h′ = 0) calculated for
three di�erent choices of v+, the central one giving the
physical solution. The pro�les for the Higgs �eld, the ve-
locity and temperature along the wall are shown in Fig. 8.
Note the heating e�ect behind the bubble, with the value
of T setting onto T− = 126.499 GeV > Tc = 126.376
GeV. For this temperature above the critical one there
is still a nontrivial Higgs minimum, yet with a higher
energy than the minimum at the origin. The physi-

Figure 7: Pseudopotential V̂high(h, h′ = 0) in the N = 2 case
for T+ = Tnuc = 126.229 GeV, with v+ taking the values (from
top to bottom): -0.65, -0.723, -0.80. The central choice of v+
gives a consistent detonation pro�le.

cal interpretation is that the �uid heats immediately
behind the bubble, driving the Higgs to a metastable
minimum. For solving the hydrodynamic pro�le behind
the bubble, the value of the Higgs can be assumed not
to change much i.e. the energy of the Higgs vacuum
shifts with temperature, but the relative changes of the
VEV are small. Then assuming a constant Higgs value
one can solve the hydrodynamic equations (9) behind
the bubble, which con�rms that the temperature drops
to a value Tin = 126.259 GeV < Tc, so that the Higgs
can be stabilized at the absolute minimum of the �nite-
temperature potential well inside the bubble. The back-
reaction force computed from Eq. (12) is found to be

|~Fback|/A/m4
W = 0.648, while the Eq. (1) gives a result

which is 3.2 times larger.

VII. DISCUSSION AND CONCLUSIONS

In this work we have con�rmed and provided new in-
sights on the hydrodynamic e�ects that give rise to sublu-
minal bubble propagation in �rst-order phase transitions
in which equilibrium is maintained locally. Such sublu-
minal propagation in equilibrium has been proposed for
de�agrations in Ref. [32] and for general transitions in
[33], and remains in contrast to the common view that
links bubble friction with out-of-equilibrium e�ects. In
our work we have provided an understanding of the sub-
liminal propagation as a consequence of the conservation
of the total entropy of the degrees of freedom in local
equilibrium: in a simpli�ed planar expansion in which
detonation or de�agration fronts develop (which typically
propagate subluminally) entropy conservation relates the
bubble wall and front velocities. We went beyond the
work of Ref. [33] by clarifying the origin of the friction
forces in the di�erential equations for the scalar �eld and
the temperature and velocity pro�les of the plasma, and
by calculating the time-dependent bubble expansion in
a SM extension with additional scalars. The slowing
down of the bubble arises from terms sensitive to the de-
pendence of the entropy on the scalar �eld background.
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Figure 8: Detonation pro�les of the Higgs, temperature and
velocity across the bubble wall. Note how the �uid velocity
increases behind the bubble, and the temperature rises. One
reaches T− > Tc, but the Higgs is still allowed to be in a
metastable minimum. In the hydrodynamic solution far be-
hind the wall, the temperature drops such that the Higgs is
stabilized (see Fig. 9).

These backreaction e�ects can be accounted for by us-
ing conservation of the stress-energy momentum ten-
sor and incorporating the background-�eld-dependence
of the plasma's pressure and enthalpy, which can be de-
rived straightforwardly from the thermal corrections to
the e�ective potential.
We have argued that the conservation of the total en-

tropy of the equilibrated degrees of freedom implies that
the �uid must heat up in a region near the bubble, which
o�ers a natural connection with the heating e�ect that
was pointed out in Ref. [32]. That reference analyzed
bubble pro�les by considering the equations in the static
limit, while accounting for consistent hydrodynamic de-
�agration pro�les away from the bubble. We have done
analogous computations and found that, while the e�ect
pointed out in Ref. [32] was assumed to be restricted to

de�agrations, one can also get consistent detonation so-
lutions with subluminal wall velocities, as expected from
the results of Ref. [33].
The computations of the static wall pro�les allowed us

to estimate the resulting backreaction force, computed

0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72

0.0000
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0.0010

0.0015

0.0020

0.0025

0.0030

Tcrit

Figure 9: Hydrodynamic pro�les for the �uid temperature
and velocity behind the bubble wall, assuming a constant
Higgs value.

from Eq. (12), against the results (1) of Ref. [33], which
excludes runaway bubbles. We found qualitative agree-
ment up to O(1) e�ects related to the change of velocity
and temperature across the wall.
In our calculations we considered a scenario in which

the hypothesis of local equilibrium seems to be justi�ed.
Nevertheless, in general settings in which some species
remain out of equilbrium, we expect as pointed out in
Ref. [33] that the backreaction force from the equilibrated
plasma will still play an important role, as the conserva-
tion of the total entropy of the degrees of freedom in equi-
librium will typically require subluminal speeds. This
e�ect should be accounted for properly in such cases.
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