Skip to main content

Research Repository

Advanced Search

Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome (2022)
Journal Article
Guillen-Garcia, A., Gibson, S., Jordan, C., Ramaswamy, V., Linthwaite, V., Bromley, E., …Cann, M. (2022). Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome. Nature Communications, 13, Article 5289. https://doi.org/10.1038/s41467-022-32925-6

Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. H... Read More about Allophycocyanin A is a carbon dioxide receptor in the cyanobacterial phycobilisome.

Applying TADF Emitters in Bioimaging and Sensing—A Novel Approach Using Liposomes for Encapsulation and Cellular Uptake (2021)
Journal Article
Smith, P. O., Black, D. J., Pal, R., Avó, J., Dias, F. B., Linthwaite, V. L., …Pålsson, L. (2021). Applying TADF Emitters in Bioimaging and Sensing—A Novel Approach Using Liposomes for Encapsulation and Cellular Uptake. Frontiers in Chemistry, 9, Article 743928. https://doi.org/10.3389/fchem.2021.743928

A new method for facilitating the delivery, uptake and intracellular localisation of thermally activated delayed fluorescence (TADF) complexes was developed. First, confinement of TADF complexes in liposomes was demonstrated, which were subsequently... Read More about Applying TADF Emitters in Bioimaging and Sensing—A Novel Approach Using Liposomes for Encapsulation and Cellular Uptake.

The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor (2017)
Journal Article
Townsend, P., Dixon, C., Slootweg, E., Sukarta, O., Yang, A., Hughes, T., …Cann, M. (2018). The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry, 293(9), 3218-3233. https://doi.org/10.1074/jbc.ra117.000485

Plant NLR proteins enable the immune system to recognise and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming and some NLRs have been shown to act in the nucleus and interact with transcription fa... Read More about The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

The tomato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor I-2 couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange (2015)
Journal Article
Fenyk, S., Dixon, C., Kittens, W., Townsend, P., Sharpies, G., Pålsson, L., …Cann, M. (2016). The tomato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor I-2 couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange. Journal of Biological Chemistry, 291(3), 1137-1147. https://doi.org/10.1074/jbc.m115.698589

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognise and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genu... Read More about The tomato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor I-2 couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange.

The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 is a Pathogen Dependent DNA-Deforming Protein (2015)
Journal Article
Fenyk, S., Townsend, P. D., Dixon, C. H., Spies, G. B., de San Eustaquio Campillo, A., Slootweg, E. J., …Cann, M. J. (2015). The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 is a Pathogen Dependent DNA-Deforming Protein. Journal of Biological Chemistry, 290(41), 24945-24960. https://doi.org/10.1074/jbc.m115.672121

Plant NLR proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus, however, conserved nuclear targets that support their role in immunity are unknown. Previously we noted a structural homology between the NB domain of NLR... Read More about The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 is a Pathogen Dependent DNA-Deforming Protein.