Skip to main content

Research Repository

Advanced Search

Dr Andrew Danos' Outputs (51)

Identifying Key Physical Properties of Simple Organic Drop Cast Films that give Visible to Ultraviolet Light Up‐Conversion (2025)
Journal Article
Lodola, F., Miranda‐Salinas, H., Kuila, S., Danos, A., & Monkman, A. P. (online). Identifying Key Physical Properties of Simple Organic Drop Cast Films that give Visible to Ultraviolet Light Up‐Conversion. ChemPhotoChem, Article e202400341. https://doi.org/10.1002/cptc.202400341

We demonstrate UV‐emitting films of 2,5‐diphenyloxazole (PPO) sensitised by 3,3′‐carbonylbis(7‐diethylaminocoumarin) (CBDAC), prepared by simple drop casting with rapid solvent evaporation, giving up‐converted emission even at low excitation intensit... Read More about Identifying Key Physical Properties of Simple Organic Drop Cast Films that give Visible to Ultraviolet Light Up‐Conversion.

The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation (2024)
Journal Article
Marques dos Santos, J., Hall, D., Basumatary, B., Bryden, M., Chen, D., Choudhary, P., Comerford, T., Crovini, E., Danos, A., De, J., Diesing, S., Fatahi, M., Griffin, M., Kumar Gupta, A., Hafeez, H., Hämmerling, L., Hanover, E., Haug, J., Heil, T., Karthik, D., …Zysman-Colman, E. (2024). The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chemical Reviews, 124(24), 13736-14110. https://doi.org/10.1021/acs.chemrev.3c00755

Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs)... Read More about The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation.

Separating triplet exciton diffusion from triplet-triplet annihilation by the introduction of a mediator (2024)
Journal Article
Carrod, A., Berghuis, M., Gopalakrishnan, V. N., Monkman, A. P., Danos, A., & Börjesson, K. (online). Separating triplet exciton diffusion from triplet-triplet annihilation by the introduction of a mediator. Chemical Science, https://doi.org/10.1039/d4sc07004f

Triplet–triplet annihilation photon upconversion (TTA-UC) combines the energy of two photons to provide one of higher energy that can be used to drive photochemical or photophysical processes. TTA-UC proceeds at high efficiencies in dilute solution,... Read More about Separating triplet exciton diffusion from triplet-triplet annihilation by the introduction of a mediator.

Diffusion‐Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs (2024)
Journal Article
Mattiello, S., Danos, A., Stavrou, K., Ronchi, A., Baranovski, R., Florenzano, D., Meinardi, F., Beverina, L., Monkman, A., & Monguzzi, A. (2024). Diffusion‐Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs. Advanced Optical Materials, 12(33), Article 2401597. https://doi.org/10.1002/adom.202401597

Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet‐excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on tri... Read More about Diffusion‐Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs.

Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules (2024)
Journal Article
Öner, S., Kuila, S., Stavrou, K., Danos, A., Fox, M. A., Monkman, A. P., & Bryce, M. R. (2024). Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules. Chemistry of Materials, 36(15), 7135-7150. https://doi.org/10.1021/acs.chemmater.4c00850

The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now fre... Read More about Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules.

Isomeric modulation of thermally activated delayed fluorescence in dibenzo[ a, c ]phenazine-based (deep) red emitters (2024)
Journal Article
Brebels, S., Cardeynaels, T., Jackers, L., Kuila, S., Penxten, H., Salthouse, R. J., Danos, A., Monkman, A. P., Champagne, B. R., & Maes, W. (2024). Isomeric modulation of thermally activated delayed fluorescence in dibenzo[ a, c ]phenazine-based (deep) red emitters. Journal of Materials Chemistry C Materials for optical and electronic devices, 12(25), 9255-9265. https://doi.org/10.1039/d4tc01214c

A series of four emissive regio-isomers are synthesized based on the dibenzo[a, c]phenazine-11,12-dicarbonitrile (DBPzCN) acceptor scaffold and a triphenylamine (TPA) donor. Density functional theory is utilized to compare the relative differences in... Read More about Isomeric modulation of thermally activated delayed fluorescence in dibenzo[ a, c ]phenazine-based (deep) red emitters.

Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes (2024)
Journal Article
Stavrou, K., Franca, L. G., Danos, A., & Monkman, A. P. (2024). Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes. Nature Photonics, 18(6), 554-561. https://doi.org/10.1038/s41566-024-01395-1

Blue organic light-emitting diode (OLED) technology requires further advancements, and hyperfluorescent (HF) OLEDs have emerged as a promising solution to address stability and colour-purity concerns. A key factor influencing the performance of HF-OL... Read More about Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes.

Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule (2024)
Journal Article
Franca, L., Danos, A., Saxena, R., Kuila, S., Stavrou, K., Li, C., …Monkman, A. P. (2024). Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule. Journal of Physical Chemistry Letters, 15(6), 1734-1740. https://doi.org/10.1021/acs.jpclett.4c00030

Optical pump–probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emi... Read More about Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule.

Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling (2023)
Journal Article
Miranda-Salinas, H., Wang, J., Danos, A., Matulaitis, T., Stavrou, K., Monkman, A. P., & Zysman-Colman, E. (2024). Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling. Journal of Materials Chemistry C Materials for optical and electronic devices, 12(6), 1996-2006. https://doi.org/10.1039/d3tc04394k

Multi-resonant thermally activated delayed fluorescence materials (MR-TADF) can show narrow-band emission with high photoluminescence quantum efficiency, desirable for applications in organic light emitting diodes (OLEDS). However, they frequently su... Read More about Peripheral halogen atoms in multi-resonant thermally activated delayed fluorescence emitters: the role of heavy atoms in intermolecular interactions and spin orbit coupling.

Intramolecular locking and coumarin insertion: a stepwise approach for TADF design (2023)
Journal Article
Paredis, S., Cardeynaels, T., Brebels, S., Deckers, J., Kuila, S., Lathouwers, A., Van Landeghem, M., Vandewal, K., Danos, A., Monkman, A. P., Champagne, B., & Maes, W. (2023). Intramolecular locking and coumarin insertion: a stepwise approach for TADF design. Physical Chemistry Chemical Physics, 25(43), 29842-29849. https://doi.org/10.1039/d3cp03695b

Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point... Read More about Intramolecular locking and coumarin insertion: a stepwise approach for TADF design.

Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems (2023)
Journal Article
Salah, L., Makhseed, S., Ghazal, B., Abdel Nazeer, A., Etherington, M. K., Ponseca Jr., C. S., …Shuaib, A. (2023). Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems. Physical Chemistry Chemical Physics, 25(36), 24878-24882. https://doi.org/10.1039/d3cp02586a

In this study we present a novel energy transfer material inspired by natural light-harvesting antenna arrays, zinc(II) phthalocyanine-pyrene (ZnPcPy). The ZnPcPy system facilitates energy transfer from 16 covalently linked pyrene (Py) donor chromoph... Read More about Covalently linked pyrene antennas for optically dense yet aggregation-resistant light-harvesting systems.

Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy (2023)
Journal Article
Alanazi, F., Eggeman, A. S., Stavrou, K., Danos, A., Monkman, A. P., & Mendis, B. G. (2023). Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 14(36), 8183-8190. https://doi.org/10.1021/acs.jpclett.3c01344

Structural disorder in molecular crystals is a fundamental limitation for achieving high charge carrier mobilities. Quantifying and uncovering the mechanistic origins of disorder are, however, extremely challenging. Here we use variable coherence tra... Read More about Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy.

Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence (2023)
Journal Article
Paredis, S., Cardeynaels, T., Kuila, S., Deckers, J., Van Landeghem, M., Vandewal, K., Danos, A., Monkman, A. P., Champagne, B., & Maes, W. (2023). Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence. Chemistry - A European Journal, 29(42), Article e202301369. https://doi.org/10.1002/chem.202301369

Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound... Read More about Balanced Energy Gaps as a Key Design Rule for Solution‐Phase Organic Room Temperature Phosphorescence.

Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence (2023)
Journal Article
Sudhakar, P., Kuila, S., Stavrou, K., Danos, A., Slawin, A. M., Monkman, A., & Zysman-Colman, E. (2023). Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence. ACS Applied Materials and Interfaces, 15(21), 25806-25818. https://doi.org/10.1021/acsami.3c05409

Extensive research has been devoted to the development of thermally activated delayed fluorescence emitters, especially those showing pure-blue emission for use in lighting and fullcolor display applications. Towards that goal, herein we report a nov... Read More about Azaborine as a Versatile Weak Donor for Thermally Activated Delayed Fluorescence.

Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule (2023)
Journal Article
Franca, L. G., Danos, A., & Monkman, A. (2023). Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule. Journal of Physical Chemistry Letters, 14(11), 2764-2771. https://doi.org/10.1021/acs.jpclett.2c03925

The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine–anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples th... Read More about Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule.

Rupturing aromaticity by periphery overcrowding (2023)
Journal Article
Saha, P. K., Mallick, A., Turley, A. T., Bismillah, A. N., Danos, A., Monkman, A. P., Avestro, A.-J., Yufit, D. S., & McGonigal, P. R. (2023). Rupturing aromaticity by periphery overcrowding. Nature Chemistry, 15(4), 516-525. https://doi.org/10.1038/s41557-023-01149-6

The balance between strain relief and aromatic stabilization dictates the form and function of non-planar π-aromatics. Overcrowded systems are known to undergo geometric deformations, but the energetically favourable π-electron delocalization of thei... Read More about Rupturing aromaticity by periphery overcrowding.

Rational Molecular Design Enables Efficient Blue TADF−OLEDs with Flexible Graphene Substrate (2022)
Journal Article
Sharif, P., Alemdar, E., Ozturk, S., Caylan, O., Haciefendioglu, T., Buke, G., Aydemir, M., Danos, A., Monkman, A. P., Yildirim, E., Gunbas, G., Cirpan, A., & Oral, A. (2022). Rational Molecular Design Enables Efficient Blue TADF−OLEDs with Flexible Graphene Substrate. Advanced Functional Materials, 32(47), Article 2207324. https://doi.org/10.1002/adfm.202207324

Observation of thermally activated delayed fluorescence (TADF) in conjugated systems redefined the molecular design approach to realize highly efficient organic light emitting diodes (OLEDs) in the early 2010s. Enabling effective reverse intersystem... Read More about Rational Molecular Design Enables Efficient Blue TADF−OLEDs with Flexible Graphene Substrate.

Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt? (2022)
Journal Article
Hempe, M., Kukhta, N. A., Danos, A., Batsanov, A. S., Monkman, A. P., & Bryce, M. R. (2022). Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt?. Journal of Physical Chemistry Letters, 13(35), 8221-8227. https://doi.org/10.1021/acs.jpclett.2c00907

Intramolecular hydrogen bonding between donor and acceptor segments in thermally activated delayed fluorescence (TADF) materials is now frequently employed to─purportedly─rigidify the structure and improve the emission performance of these materials.... Read More about Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt?.

Laplace Transform Fitting as a Tool To Uncover Distributions of Reverse Intersystem Crossing Rates in TADF Systems (2022)
Journal Article
Kelly, D., Gomes Franca, L., Stavrou, K., Danos, A., & Monkman, A. P. (2022). Laplace Transform Fitting as a Tool To Uncover Distributions of Reverse Intersystem Crossing Rates in TADF Systems. Journal of Physical Chemistry Letters, 13(30), 6981-6986. https://doi.org/10.1021/acs.jpclett.2c01864

Donor–acceptor (D–A) thermally activated delayed fluorescence (TADF) molecules are exquisitely sensitive to D–A dihedral angle. Although commonly simplified to an average value, these D–A angles nonetheless exist as distributions across the individua... Read More about Laplace Transform Fitting as a Tool To Uncover Distributions of Reverse Intersystem Crossing Rates in TADF Systems.

Novel D–A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence (2022)
Journal Article
Maggiore, A., Tan, X., Brosseau, A., Danos, A., Miomandre, F., Monkman, A. P., Audebert, P., & Clavier, G. (2022). Novel D–A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence. Physical Chemistry Chemical Physics, 24(29), 17770-17781. https://doi.org/10.1039/d2cp00777k

Control of photophysical properties is crucial for the continued development of electroluminescent devices and luminescent materials. Preparation and study of original molecules uncovers design rules towards efficient materials and devices. Here we h... Read More about Novel D–A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence.