Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence (2024)
Journal Article
Went, S. C., Picton, D. M., Morgan, R. D., Nelson, A., Brady, A., Mariano, G., Dryden, D. T. F., Smith, D. L., Wenner, N., Hinton, J. C. D., & Blower, T. R. (2024). Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence. Nature Communications, 15, Article 7236. https://doi.org/10.1038/s41467-024-51629-7

Bacteria have evolved a broad range of systems that provide defence against their viral predators, bacteriophages. Bacteriophage Exclusion (BREX) systems recognise and methylate 6 bp non-palindromic motifs within the host genome, and prevent replicat... Read More about Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence.

Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein (2024)
Journal Article
Birkholz, N., Kamata, K., Feussner, M., Wilkinson, M. E., Cuba Samaniego, C., Migur, A., Kimanius, D., Ceelen, M., Went, S. C., Usher, B., Blower, T. R., Brown, C. M., Beisel, C. L., Weinberg, Z., Fagerlund, R. D., Jackson, S. A., & Fineran, P. C. (2024). Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein. Nature, 631(8021), 670-677. https://doi.org/10.1038/s41586-024-07644-1

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins . For instance, in the arms race between bacteria and bacteriophages, rapid expression of ph... Read More about Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein.

Multi-layered genome defences in bacteria (2024)
Journal Article
Agapov, A., Baker, K., Bedekar, P., Bhatia, R., Blower, T. R., Brockhurst, M. A., …Wright, R. (2024). Multi-layered genome defences in bacteria. Current Opinion in Microbiology, 78, Article 102436. https://doi.org/10.1016/j.mib.2024.102436

Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR–Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Not... Read More about Multi-layered genome defences in bacteria.

Diverse Durham collection phages demonstrate complex BREX defence responses (2023)
Journal Article
Kelly, A., Went, S. C., Mariano, G., Shaw, L. P., Picton, D. M., Duffner, S. J., Coates, I., Herdman-Grant, R., Gordeeva, J., Drobiazko, A., Isaev, A., Lee, Y.-J., Luyten, Y., Morgan, R. D., Weigele, P., Severinov, K., Wenner, N., Hinton, J. C., & Blower, T. R. (2023). Diverse Durham collection phages demonstrate complex BREX defence responses. Applied and Environmental Microbiology, 89(9), Article e00623-23. https://doi.org/10.1128/aem.00623-23

Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicro... Read More about Diverse Durham collection phages demonstrate complex BREX defence responses.