Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Lattice-depth measurement using continuous grating atom diffraction (2019)
Journal Article
Beswick, B. T., Hughes, I. G., & Gardiner, S. A. (2019). Lattice-depth measurement using continuous grating atom diffraction. Physical Review A, 100(6), Article 063629. https://doi.org/10.1103/physreva.100.063629

We propose an approach to characterizing the depths of optical lattices, in which either an atomic gas is given a finite initial momentum or, alternatively, a corresponding “walking” configuration is applied to the optical lattice itself. This leads... Read More about Lattice-depth measurement using continuous grating atom diffraction.

An intuitive approach to structuring the three electric field components of light (2019)
Journal Article
Maucher, F., Skupin, S., Gardiner, S., & Hughes, I. (2019). An intuitive approach to structuring the three electric field components of light. New Journal of Physics, 21, Article 013032. https://doi.org/10.1088/1367-2630/aaf711

This paper presents intuitive interpretations of tightly focused beams of light by drawing analogies with two-dimensional electrostatics, magnetostatics and fluid dynamics. We use a Helmholtz decomposition of the transverse electric field components... Read More about An intuitive approach to structuring the three electric field components of light.

Lattice-depth measurement using multipulse atom diffraction in and beyond the weakly diffracting limit (2019)
Journal Article
Beswick, B. T., Hughes, I. G., & Gardiner, S. A. (2019). Lattice-depth measurement using multipulse atom diffraction in and beyond the weakly diffracting limit. Physical Review A, 99(1), Article 013614. https://doi.org/10.1103/physreva.99.013614

Precise knowledge of optical lattice depths is important for a number of areas of atomic physics, most notably in quantum simulation, atom interferometry, and for the accurate determination of transition matrix elements. In such experiments, lattice... Read More about Lattice-depth measurement using multipulse atom diffraction in and beyond the weakly diffracting limit.