Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph Convolutional Network for Multi-class Trajectory Prediction
(2021)
Presentation / Conference Contribution
Rainbow, B. A., Men, Q., & Shum, H. P. (2021, October). Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph Convolutional Network for Multi-class Trajectory Prediction. Presented at 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia
Predicting the movement trajectories of multiple classes of road users in real-world scenarios is a challenging task due to the diverse trajectory patterns. While recent works of pedestrian trajectory prediction successfully modelled the influence of... Read More about Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph Convolutional Network for Multi-class Trajectory Prediction.