Asish Bera
Two-stage human verification using HandCAPTCHA and anti-spoofed finger biometrics with feature selection
Bera, Asish; Bhattacharjee, Debotosh; Shum, Hubert P.H.
Abstract
This paper presents a human verification scheme in two independent stages to overcome the vulnerabilities of attacks and to enhance security. At the first stage, a hand image-based CAPTCHA (HandCAPTCHA) is tested to avert automated bot-attacks on the subsequent biometric stage. In the next stage, finger biometric verification of a legitimate user is performed with presentation attack detection (PAD) using the real hand images of the person who has passed a random HandCAPTCHA challenge. The electronic screen-based PAD is tested using image quality metrics. After this spoofing detection, geometric features are extracted from the four fingers (excluding the thumb) of real users. A modified forward–backward (M-FoBa) algorithm is devised to select relevant features for biometric authentication. The experiments are performed on the Boğaziçi University (BU) and the IIT-Delhi (IITD) hand databases using the k-nearest neighbor and random forest classifiers. The average accuracy of the correct HandCAPTCHA solution is 98.5%, and the false accept rate of a bot is 1.23%. The PAD is tested on 255 subjects of BU, and the best average error is 0%. The finger biometric identification accuracy of 98% and an equal error rate (EER) of 6.5% have been achieved for 500 subjects of the BU. For 200 subjects of the IITD, 99.5% identification accuracy, and 5.18% EER are obtained.
Citation
Bera, A., Bhattacharjee, D., & Shum, H. P. (2021). Two-stage human verification using HandCAPTCHA and anti-spoofed finger biometrics with feature selection. Expert Systems with Applications, 171, https://doi.org/10.1016/j.eswa.2021.114583
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 5, 2021 |
Online Publication Date | Jan 9, 2021 |
Publication Date | Jun 1, 2021 |
Deposit Date | Mar 23, 2021 |
Publicly Available Date | Jan 9, 2022 |
Journal | Expert Systems with Applications |
Print ISSN | 0957-4174 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 171 |
DOI | https://doi.org/10.1016/j.eswa.2021.114583 |
Public URL | https://durham-repository.worktribe.com/output/1245161 |
Files
Accepted Journal Article
(2.7 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
SEM-Net: Efficient Pixel Modelling for Image Inpainting with Spatially Enhanced SSM
(2025)
Presentation / Conference Contribution
FineCausal: A Causal-Based Framework for Interpretable Fine-Grained Action Quality Assessment
(2025)
Presentation / Conference Contribution
Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction
(2025)
Journal Article
MxT: Mamba x Transformer for Image Inpainting
(2024)
Presentation / Conference Contribution
TraIL-Det: Transformation-Invariant Local Feature Networks for 3D LiDAR Object Detection with Unsupervised Pre-Training
(2024)
Presentation / Conference Contribution