Qianhui Men
GAN-based Reactive Motion Synthesis with Class-aware Discriminators for Human-human Interaction
Men, Qianhui; Shum, Hubert P.H.; Ho, Edmond S.L.; Leung, Howard
Abstract
Creating realistic characters that can react to the users’ or another character’s movement can benefit computer graphics, games and virtual reality hugely. However, synthesizing such reactive motions in human-human interactions is a challenging task due to the many different ways two humans can interact. While there are a number of successful researches in adapting the generative adversarial network (GAN) in synthesizing single human actions, there are very few on modelling human-human interactions. In this paper, we propose a semi-supervised GAN system that synthesizes the reactive motion of a character given the active motion from another character. Our key insights are two-fold. First, to effectively encode the complicated spatial-temporal information of a human motion, we empower the generator with a part-based long short-term memory (LSTM) module, such that the temporal movement of different limbs can be effectively modelled. We further include an attention module such that the temporal significance of the interaction can be learned, which enhances the temporal alignment of the active-reactive motion pair. Second, as the reactive motion of different types of interactions can be significantly different, we introduce a discriminator that not only tells if the generated movement is realistic or not, but also tells the class label of the interaction. This allows the use of such labels in supervising the training of the generator. We experiment with the SBU and the HHOI datasets. The high quality of the synthetic motion demonstrates the effective design of our generator, and the discriminability of the synthesis also demonstrates the strength of our discriminator.
Citation
Men, Q., Shum, H. P., Ho, E. S., & Leung, H. (2022). GAN-based Reactive Motion Synthesis with Class-aware Discriminators for Human-human Interaction. Computers and Graphics, 102, 634-645. https://doi.org/10.1016/j.cag.2021.09.014
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 30, 2021 |
Online Publication Date | Oct 9, 2021 |
Publication Date | 2022-02 |
Deposit Date | Sep 30, 2021 |
Publicly Available Date | Oct 9, 2022 |
Journal | Computers and Graphics |
Print ISSN | 0097-8493 |
Electronic ISSN | 0097-8493 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 102 |
Pages | 634-645 |
DOI | https://doi.org/10.1016/j.cag.2021.09.014 |
Public URL | https://durham-repository.worktribe.com/output/1229785 |
Files
Accepted Journal Article
(4.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2021 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
One-Index Vector Quantization Based Adversarial Attack on Image Classification
(2024)
Journal Article
Geometric Features Enhanced Human-Object Interaction Detection
(2024)
Journal Article
HINT: High-quality INpainting Transformer with Mask-Aware Encoding and Enhanced Attention
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search