Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Bioinspired Multifunctional Polymer–Nanoparticle–Surfactant Complex Nanocomposite Surfaces for Antibacterial Oil–Water Separation (2018)
Journal Article
Ritchie, A., Cox, H., Barrientos-Palomo, S., Sharples, G., & Badyal, J. (2019). Bioinspired Multifunctional Polymer–Nanoparticle–Surfactant Complex Nanocomposite Surfaces for Antibacterial Oil–Water Separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 352-359. https://doi.org/10.1016/j.colsurfa.2018.10.030

Bioinspired polymer–nanoparticle–fluorosurfactant complex composite coatings are shown to display fast-switching oleophobic–hydrophilic properties. The large switching parameters (difference between the equilibrium oil and water static contact angles... Read More about Bioinspired Multifunctional Polymer–Nanoparticle–Surfactant Complex Nanocomposite Surfaces for Antibacterial Oil–Water Separation.

On the antibacterial activity of azacarboxylate ligands: lowered metal ion affinities for bis-amide derivatives of EDTA do not mean reduced activity (2018)
Journal Article
Mulla, R., Beecroft, M., Pal, R., Aguilar, J., Pitarch-Jarque, J., García‐España, E., …Williams, J. (2018). On the antibacterial activity of azacarboxylate ligands: lowered metal ion affinities for bis-amide derivatives of EDTA do not mean reduced activity. Chemistry - A European Journal, 24(28), 7137-7148. https://doi.org/10.1002/chem.201800026

EDTA is widely used as an inhibitor of bacterial growth, affecting the uptake and control of metal ions by microorganisms. We describe the synthesis and characterisation of two symmetrical bis‐amide derivatives of EDTA, featuring glycyl or pyridyl su... Read More about On the antibacterial activity of azacarboxylate ligands: lowered metal ion affinities for bis-amide derivatives of EDTA do not mean reduced activity.