Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Interface enhanced precessional damping in spintronic multilayers: A perspective (2022)
Journal Article
Swindells, C., & Atkinson, D. (2022). Interface enhanced precessional damping in spintronic multilayers: A perspective. Journal of Applied Physics, 131(17), Article 170902. https://doi.org/10.1063/5.0080267

In the past two decades, there have been huge developments in the understanding of damping in multilayered thin films and, more generally, in spin-transport in spintronic systems. In multilayered ferromagnetic (FM)/non-magnetic (NM) thin-film systems... Read More about Interface enhanced precessional damping in spintronic multilayers: A perspective.

Magnetic damping in ferromagnetic/heavy-metal systems: The role of interfaces and the relation to proximity-induced magnetism (2022)
Journal Article
Swindells, C., Głowiński, H., Choi, Y., Haskel, D., Michałowski, P., Hase, T., …Atkinson, D. (2022). Magnetic damping in ferromagnetic/heavy-metal systems: The role of interfaces and the relation to proximity-induced magnetism. Physical Review B, 105(9), Article 094433. https://doi.org/10.1103/physrevb.105.094433

Damping and spin transport in spintronic multilayered systems continues to be a topic of active research. The enhancement of damping in ferromagnet (FM)/spacer layer (SL)/heavy-metal (HM) thin-film systems was studied for Co 25 Fe 75 / SL / Pt with a... Read More about Magnetic damping in ferromagnetic/heavy-metal systems: The role of interfaces and the relation to proximity-induced magnetism.