Skip to main content

Research Repository

Advanced Search

All Outputs (5)

The SKMT Algorithm: A method for assessing and comparing underlying protein entanglement (2023)
Journal Article
Bale, A., Rambo, R., & Prior, C. (2023). The SKMT Algorithm: A method for assessing and comparing underlying protein entanglement. PLoS Computational Biology, 19(11), Article e1011248. https://doi.org/10.1371/journal.pcbi.1011248

We present fast and simple-to-implement measures of the entanglement of protein tertiary structures which are appropriate for highly flexible structure comparison. These are performed using the SKMT algorithm, a novel method of smoothing the Cα backb... Read More about The SKMT Algorithm: A method for assessing and comparing underlying protein entanglement.

Deciphering the Pre–solar-storm Features of the 2017 September Storm From Global and Local Dynamics (2023)
Journal Article
Raphaldini, B., Dikpati, M., Norton, A. A., Teruya, A. S. W., McIntosh, S. W., Prior, C. B., & MacTaggart, D. (2023). Deciphering the Pre–solar-storm Features of the 2017 September Storm From Global and Local Dynamics. Astrophysical Journal, 958(2), Article 175. https://doi.org/10.3847/1538-4357/acfef0

We investigate whether global toroid patterns and the local magnetic field topology of solar active region (AR) 12673 together can hindcast the occurrence of the biggest X-flares of solar cycle (SC)-24. Magnetic toroid patterns (narrow latitude belts... Read More about Deciphering the Pre–solar-storm Features of the 2017 September Storm From Global and Local Dynamics.

Computation of Winding-Based Magnetic Helicity and Magnetic Winding Density for SHARP Magnetograms in Spherical Coordinates (2023)
Journal Article
Xiao, D., Prior, C. B., & Yeates, A. R. (2023). Computation of Winding-Based Magnetic Helicity and Magnetic Winding Density for SHARP Magnetograms in Spherical Coordinates. Solar Physics, 298(10), Article 116. https://doi.org/10.1007/s11207-023-02211-9

Magnetic helicity has been used widely in the analysis and modelling of solar active regions. However, it is difficult to evaluate and interpret helicity in spherical geometry since coronal magnetic fields are rooted in the photosphere and helicity i... Read More about Computation of Winding-Based Magnetic Helicity and Magnetic Winding Density for SHARP Magnetograms in Spherical Coordinates.

Spherical winding and helicity (2023)
Journal Article
Xiao, D., Prior, C., & Yeates, A. (2023). Spherical winding and helicity. Journal of Physics A: Mathematical and Theoretical, 56(20), Article 205201. https://doi.org/10.1088/1751-8121/accc17

In ideal magnetohydrodynamics, magnetic helicity is a conserved dynamical quantity and a topological invariant closely related to Gauss linking numbers. However, for open magnetic fields with non-zero boundary components, the latter geometrical inter... Read More about Spherical winding and helicity.

ARTop: an open-source tool for measuring active region topology at the solar photosphere (2023)
Journal Article
Alielden, K., MacTaggart, D., Ming, Q., Prior, C., & Raphaldini, B. (2023). ARTop: an open-source tool for measuring active region topology at the solar photosphere. RAS Techniques and Instruments, 2(1), 398-407. https://doi.org/10.1093/rasti/rzad029

The importance of measuring topological quantities, such as magnetic helicity, in solar observations has long been recognized. In particular, topological quantities play an important role in both understanding and predicting solar eruptions. In this... Read More about ARTop: an open-source tool for measuring active region topology at the solar photosphere.