Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Bullseye Analysis: A Fluorescence Microscopy Technique to Detect Local Changes in Intracellular Reactive Oxygen Species (ROS) Production (2022)
Journal Article
Hughes, J. G., Chisholm, D. R., Whiting, A., Girkin, J. M., & Ambler, C. A. (2023). Bullseye Analysis: A Fluorescence Microscopy Technique to Detect Local Changes in Intracellular Reactive Oxygen Species (ROS) Production. Microscopy and Microanalysis, 29(2), 529-539. https://doi.org/10.1093/micmic/ozac040

Reactive oxygen species (ROS) are naturally produced compounds that play important roles in cell signaling, gene regulation, and biological defense, including involvement in the oxidative burst that is central to the anti-microbial actions of macroph... Read More about Bullseye Analysis: A Fluorescence Microscopy Technique to Detect Local Changes in Intracellular Reactive Oxygen Species (ROS) Production.

A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine–carbon and fluorine–boron bonds (2022)
Journal Article
Dumon, A. S., Rzepa, H. S., Alamillo-Ferrer, C., Bures, J., Procter, R., Sheppard, T. D., & Whiting, A. (2022). A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine–carbon and fluorine–boron bonds. Physical Chemistry Chemical Physics, 24(34), 20409 - 20425. https://doi.org/10.1039/d2cp02317b

We report the evaluation of density-functional-theory (DFT) based procedures for predicting 19F NMR chemical shifts at modest computational cost for a range of molecules with fluorine bonds, to be used as a tool for assisting the characterisation of... Read More about A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine–carbon and fluorine–boron bonds.

Synthetic Diphenylacetylene-Based Retinoids Induce DNA Damage in Chinese Hamster Ovary Cells without Altering Viability (2022)
Journal Article
Hudhud, L., Chisholm, D. R., Whiting, A., Steib, A., Pohóczky, K., Kecskés, A., …Helyes, Z. (2022). Synthetic Diphenylacetylene-Based Retinoids Induce DNA Damage in Chinese Hamster Ovary Cells without Altering Viability. Molecules, 27(3), Article 977. https://doi.org/10.3390/molecules27030977

All-trans-retinoic acid (ATRA), the active metabolite of vitamin A, plays a pivotal role in cell differentiation, proliferation and embryonic development. It is an effective therapy for dermatological disorders and malignancies. ATRA is prone to isom... Read More about Synthetic Diphenylacetylene-Based Retinoids Induce DNA Damage in Chinese Hamster Ovary Cells without Altering Viability.