Dr Shounak Chakraborty shounak.chakraborty@durham.ac.uk
Assistant Professor
Dr Shounak Chakraborty shounak.chakraborty@durham.ac.uk
Assistant Professor
Sangeet Saha
Magnus Själander
Klaus Mcdonald-Maier
Achieving high result-accuracy in approximate computing (AC) based real-time applications without violating power constraints of the underlying hardware is a challenging problem. Execution of such AC real-time tasks can be divided into the execution of the mandatory part to obtain a result of acceptable quality, followed by a partial/complete execution of the optional part to improve accuracy of the initially obtained result within the given time-limit. However, enhancing result-accuracy at the cost of increased execution length might lead to deadline violations with higher energy usage. We propose Prepare, a novel hybrid offline-online approximate real-time task-scheduling approach, that first schedules AC-based tasks and determines operational processing speeds for each individual task constrained by system-wide power limit, deadline, and task-dependency. At runtime, by employing fine-grained DVFS, the energy-adaptive processing speed governing mechanism of Prepare reduces processing speed during each last level cache miss induced stall and scales up the processing speed once the stall finishes to a higher value than the predetermined one. To ensure on-chip thermal safety, this higher processing speed is maintained only for a short time-span after each stall, however, this reduces execution times of the individual task and generates slacks. Prepare exploits the slacks either to enhance result-accuracy of the tasks, or to improve thermal and energy efficiency of the underlying hardware, or both. With a 70 - 80% workload, Prepare offers 75% result-accuracy with its constrained scheduling, which is enhanced by 5.3% for our benchmark based evaluation of the online energy-adaptive mechanism on a 4-core based homogeneous chip multi-processor, while meeting the deadline constraint. Overall, while maintaining runtime thermal safety, Prepare reduces peak temperature by up to 8.6 °C for our baseline system. Our empirical evaluation shows that constrained scheduling of Prepare outperforms a state-of-the-art scheduling policy, whereas our runtime energy-adaptive mechanism surpasses two current DVFS based thermal management techniques.
Chakraborty, S., Saha, S., Själander, M., & Mcdonald-Maier, K. (2021). Prepare: Power-Aware Approximate Real-time Task Scheduling for Energy-Adaptive QoS Maximization. ACM Transactions on Embedded Computing Systems, 20(5s), 1-25. https://doi.org/10.1145/3476993
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 1, 2021 |
Online Publication Date | Sep 17, 2021 |
Publication Date | Oct 31, 2021 |
Deposit Date | Jan 9, 2025 |
Journal | ACM Transactions on Embedded Computing Systems |
Print ISSN | 1539-9087 |
Electronic ISSN | 1558-3465 |
Publisher | Association for Computing Machinery (ACM) |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 5s |
Article Number | 62 |
Pages | 1-25 |
DOI | https://doi.org/10.1145/3476993 |
Public URL | https://durham-repository.worktribe.com/output/3328935 |
MAFin: Maximizing Accuracy in FinFET based Approximated Real-Time Computing
(2024)
Presentation / Conference Contribution
ARCTIC: Approximate Real-Time Computing in a Cache-Conscious Multicore Environment
(2024)
Journal Article
TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores
(2024)
Journal Article
TEEMO: Temperature Aware Energy Efficient Multi-Retention STT-RAM Cache Architecture
(2024)
Presentation / Conference Contribution
NTHPC: Embracing Near-Threshold Operation for High Performance Multi-core Systems
(2023)
Presentation / Conference Contribution
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search