Skip to main content

Research Repository

Advanced Search

TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores

Chakraborty, Shounak; Sharma, Yanshul; Moulik, Sanjay

Authors

Yanshul Sharma

Sanjay Moulik



Abstract

The recent shift in the VLSI industry from conventional MOSFET to FinFET for designing contemporary chip-multiprocessor (CMP) has noticeably improved hardware platforms’ computing capabilities, but at the cost of several thermal issues. Unlike the conventional MOSFET, FinFET devices experience a significant increase in circuit speed at a higher temperature, called temperature effect inversion (TEI), but higher temperature can also curtail the circuit lifetime due to self-heating effects (SHEs). These fundamental thermal properties of FinFET introduced a new challenge for scheduling time-critical tasks on FinFET-based multicores that how to exploit TEI towards improving performance while combating SHEs. In this work, TREAFET, a temperature-aware real-time scheduler, attempts to exploit the TEI feature of FinFET-based multicores in a time-critical computing paradigm. At first, the overall progress of individual tasks is monitored, tasks are allocated to the cores, and finally, a schedule is prepared. By considering the thermal profiles of the individual tasks and the current thermal status of the cores, hot tasks are assigned to the cold cores and vice-versa. Finally, the performance and temperature are balanced on-the-fly by incorporating a prudential voltage scaling towards exploiting TEI while guaranteeing the deadline and thermal safety. Moreover, TREAFET stimulates the average runtime frequency by employing an opportunistic energy-adaptive voltage spiking mechanism, in which energy saving during memory stalls at the cores is traded off during the time slice having the spiked voltage. Simulation results claim TREAFET maintains a safe and stable thermal status (peak temperature below 80 °C) and improves frequency up to 17% over the assigned value, which ensures legitimate time-critical performance for a variety of workloads while surpassing a state-of-the-art technique. The stimulated frequency in TREAFET also finishes the tasks early, thus providing opportunities to save energy by power gating the cores, and achieves a 24% energy delay product (EDP) gain on average.

Citation

Chakraborty, S., Sharma, Y., & Moulik, S. (2024). TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores. ACM Transactions on Embedded Computing Systems, 23(4), Article 61. https://doi.org/10.1145/3665276

Journal Article Type Article
Acceptance Date May 7, 2024
Online Publication Date Jun 29, 2024
Publication Date Jul 31, 2024
Deposit Date Jan 9, 2025
Journal ACM Transactions on Embedded Computing Systems
Print ISSN 1539-9087
Electronic ISSN 1558-3465
Publisher Association for Computing Machinery (ACM)
Peer Reviewed Peer Reviewed
Volume 23
Issue 4
Article Number 61
DOI https://doi.org/10.1145/3665276
Public URL https://durham-repository.worktribe.com/output/3328965
Additional Information Available open access via DOI