Jack Y. Araz
Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms
Araz, Jack Y.; Spannowsky, Michael; Wingate, Matthew
Abstract
This study investigates the thermal properties of the repulsive Fermi-Hubbard model with chemical potential using variational quantum algorithms, crucial in comprehending particle behavior within lattices at high temperatures in condensed matter systems. Conventional computational methods encounter challenges, especially in managing chemical potential, prompting exploration into Hamiltonian approaches. Despite the promise of quantum algorithms, their efficacy is hampered by coherence limitations when simulating extended imaginary time evolution sequences. To overcome such constraints, this research focuses on optimizing variational quantum algorithms to probe the thermal properties of the Fermi-Hubbard model. Physics-inspired circuit designs are tailored to alleviate coherence constraints, facilitating a more comprehensive exploration of materials at elevated temperatures. Our study demonstrates the potential of variational algorithms in simulating the thermal properties of the Fermi-Hubbard model while acknowledging limitations stemming from error sources in quantum devices and encountering barren plateaus.
Citation
Araz, J. Y., Spannowsky, M., & Wingate, M. (2024). Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms. Physical Review A, 109(6), Article 062422. https://doi.org/10.1103/physreva.109.062422
Journal Article Type | Article |
---|---|
Acceptance Date | May 28, 2024 |
Online Publication Date | Jun 14, 2024 |
Publication Date | Jun 14, 2024 |
Deposit Date | Sep 16, 2024 |
Publicly Available Date | Sep 16, 2024 |
Journal | Physical Review A |
Print ISSN | 2469-9926 |
Electronic ISSN | 2469-9934 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 109 |
Issue | 6 |
Article Number | 062422 |
DOI | https://doi.org/10.1103/physreva.109.062422 |
Public URL | https://durham-repository.worktribe.com/output/2865019 |
Files
Published Journal Article
(1.2 Mb)
PDF
You might also like
Effective limits on single scalar extensions in the light of recent LHC data
(2023)
Journal Article
Quantum fitting framework applied to effective field theories
(2023)
Journal Article
Quantum optimization of complex systems with a quantum annealer
(2022)
Journal Article
Quantum walk approach to simulating parton showers
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search