Dario Domingo dario.domingo@durham.ac.uk
Academic Visitor
Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy Model
Domingo, Dario; Royapoor, Mohammad; Du, Hailiang; Boranian, Aaron; Walker, Sara; Goldstein, Michael
Authors
Mohammad Royapoor
Dr Hailiang Du hailiang.du@durham.ac.uk
Associate Professor
Aaron Boranian
Sara Walker
Professor Michael Goldstein michael.goldstein@durham.ac.uk
Professor
Abstract
Energy models require accurate calibration to deliver reliable predictions. This study offers statistical guidance for a systematic treatment of uncertainty before and during model calibration. Statistical emulation and history matching are introduced. An energy model of a domestic property and a full year of observed data are used as a case study. Emulators, Bayesian surrogates of the energy model, are employed to provide statistical approximations of the energy model outputs and explore the input parameter space efficiently. The emulator’s predictions, alongside quantified uncertainties, are then used to rule out parameter configurations that cannot lead to a match with the observed data. The process is automated within an iterative procedure known as history matching (HM), in which simulated gas consumption and temperature data are simultaneously matched with observed values. The results show that only a small percentage of parameter configurations (0.3% when only gas consumption is matched, and 0.01% when both gas and temperature are matched) yielded outputs matching the observed data. This demonstrates HM’s effectiveness in pinpointing the precise region where model outputs align with observations. The proposed method is intended to offer analysts a robust solution to rapidly explore a model’s response across the entire input space, rule out regions where a match with observed data cannot be achieved, and account for uncertainty, enhancing the confidence in energy models and their viability as a decision support tool.
Citation
Domingo, D., Royapoor, M., Du, H., Boranian, A., Walker, S., & Goldstein, M. (2024). Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy Model. Energies, 17(16), Article 4014. https://doi.org/10.3390/en17164014
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 31, 2024 |
Online Publication Date | Aug 13, 2024 |
Publication Date | 2024-08 |
Deposit Date | Aug 19, 2024 |
Publicly Available Date | Aug 19, 2024 |
Journal | Energies |
Electronic ISSN | 1996-1073 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 17 |
Issue | 16 |
Article Number | 4014 |
DOI | https://doi.org/10.3390/en17164014 |
Keywords | history matching, simultaneous match of diverse data, uncertainty, model discrepancy, building energy models |
Public URL | https://durham-repository.worktribe.com/output/2761442 |
Files
Published Journal Article
(11.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Properties of bounded stochastic processes employed in biophysics
(2019)
Journal Article
Bayes Linear Statistics: Theory and Methods
(2007)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search