Margaret L. Aulsebrook
Interaction of Nucleotides with a Trinuclear Terbium(III)–Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity
Aulsebrook, Margaret L.; Starck, Matthieu; Grace, Michael R.; Graham, Bim; Thordarson, Pall; Pal, Robert; Tuck, Kellie L.
Authors
Dr Matthieu Starck matthieu.starck@durham.ac.uk
Postdoctoral Research Associate
Michael R. Grace
Bim Graham
Pall Thordarson
Professor Robert Pal robert.pal@durham.ac.uk
Professor
Kellie L. Tuck
Abstract
An in-depth study of the interaction of a trinuclear terbium(III)–dizinc(II) complex with an array of nucleotides differing in the type of nucleobase and number of phosphate groups, as well as cyclic versus acyclic variants, is presented. The study examined the nature of the interaction and the efficiency at which guanine was able to sensitize terbium(III) luminescence. Competitive binding and titration studies were performed to help establish the nature/mode of the interactions. These established that (1) interaction occurs by the coordination of phosphate groups to zinc(II) (in addition to uridine in the case of uridine monophosphate), (2) acyclic nucleotides bind more strongly than cyclic counterparts because of their higher negative charge, (3) guanine-containing nucleotides are able to sensitize terbium(III) luminescence with the efficiency of sensitization following the order guanosine monophosphate (GMP) > guanosine diphosphate > guanosine triphosphate because of the mode of binding, and (4) nucleoside monophosphates bind to a single zinc(II) ion, whereas di- and triphosphates appear to bind in a bridging mode between two host molecules. Furthermore, it has been shown that guanine is a sensitizer of terbium(III) luminescence. On the basis of the ability of GMP to effectively sensitize terbium(III)-based luminescence while cyclic GMP (cGMP) does not, the complex has been utilized to monitor the catalytic conversion of cGMP to GMP by a phosphodiesterase enzyme in real time using time-gated luminescence on a benchtop fluorimeter. The complex has the potential to find broad application in monitoring the activity of enzymes that process nucleotides (co)substrates, including high-throughput drug-screening programs.
Citation
Aulsebrook, M. L., Starck, M., Grace, M. R., Graham, B., Thordarson, P., Pal, R., & Tuck, K. L. (2019). Interaction of Nucleotides with a Trinuclear Terbium(III)–Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity. Inorganic Chemistry, 58(1), 495-505. https://doi.org/10.1021/acs.inorgchem.8b02731
Journal Article Type | Article |
---|---|
Online Publication Date | Dec 18, 2018 |
Publication Date | Jan 7, 2019 |
Deposit Date | Jul 16, 2024 |
Journal | Inorganic Chemistry |
Print ISSN | 0020-1669 |
Electronic ISSN | 1520-510X |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 58 |
Issue | 1 |
Pages | 495-505 |
DOI | https://doi.org/10.1021/acs.inorgchem.8b02731 |
Public URL | https://durham-repository.worktribe.com/output/2600002 |
You might also like
Hierarchical self-assembly in an RNA-based coordination polymer hydrogel
(2023)
Journal Article
The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search