Dingming Jiang
Experimental investigation of a mixed desiccant solution of potassium formate and ionic liquid
Jiang, Dingming; Giampieri, Alessandro; Ling-Chin, Janie; Roskilly, Anthony Paul
Authors
Dr Alessandro Giampieri alessandro.giampieri@durham.ac.uk
Postdoctoral Research Associate
Dr Janie Ling Chin janie.ling-chin@durham.ac.uk
Associate Professor
Professor Tony Roskilly anthony.p.roskilly@durham.ac.uk
Professor
Abstract
Liquid desiccant technology is a promising energy-efficient alternative to conventional temperature and humidity control systems. In the quest to identify the optimal fluid for liquid desiccant systems, alternative desiccant solutions have been explored in terms of their feasibility and compatibility in dehumidification systems. This study proposes and characterises a new type of less expensive mixture of potassium formate (HCO2K) and 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]). This novel desiccant solution was investigated in terms of corrosiveness to metals, moisture absorption and desorption ability, cost-effectiveness compared to conventional desiccant solutions. The corrosiveness of desiccant solutions to copper-nickel, copper and steel was tested at room temperature and at 60 °C. Experiments were conducted in a climatic chamber with temperatures of 25–31 °C and relative humidities of 80–90% for the absorption process and temperatures of 50–70 °C and relative humidities of 20–30% for the desorption process to assess the moisture absorption and desorption capacities and mass fraction variations of the desiccant solutions. The mixed desiccant of HCO2K/[EMIM][OAc] in the ratio 60/10% wt. showed a moisture absorption capacity of 0.146 gH2O/gsol (compared to 0.18 gH2O/gsol for aqueous lithium chloride at 33.3% wt.) for a temperature and relative humidity of the climatic chamber of 25 °C and 90%, respectively. Its low corrosiveness, good moisture absorption and desorption capacity and higher cost-effectiveness make it a promising alternative to conventional desiccants, such as aqueous solutions of lithium chloride.
Citation
Jiang, D., Giampieri, A., Ling-Chin, J., & Roskilly, A. P. (2024). Experimental investigation of a mixed desiccant solution of potassium formate and ionic liquid. Green Energy and Sustainability, 4(2), 1-24. https://doi.org/10.47248/ges2404020002
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 2, 2024 |
Online Publication Date | May 2, 2024 |
Publication Date | May 2, 2024 |
Deposit Date | Jul 8, 2024 |
Publicly Available Date | Jul 9, 2024 |
Journal | Green Energy and Sustainability |
Electronic ISSN | 2771-1641 |
Peer Reviewed | Peer Reviewed |
Volume | 4 |
Issue | 2 |
Article Number | 0002 |
Pages | 1-24 |
DOI | https://doi.org/10.47248/ges2404020002 |
Public URL | https://durham-repository.worktribe.com/output/2521912 |
Files
Published Journal Article
(2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study
(2024)
Journal Article
Research and innovation identified to decarbonise the maritime sector
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search