E.V. Linder
Cosmic structure growth and dark energy
Linder, E.V.; Jenkins, A.R.
Abstract
Dark energy has a dramatic effect on the dynamics of the Universe, causing the recently discovered acceleration of the expansion. The dynamics are also central to the behaviour of the growth of large-scale structure, offering the possibility that observations of structure formation provide a sensitive probe of the cosmology and dark energy characteristics. In particular, dark energy with a time-varying equation of state can have an influence on structure formation stretching back well into the matter-dominated epoch. We analyse this impact, first calculating the linear perturbation results, including those for weak gravitational lensing. These dynamical models possess definite observable differences from constant equation of state models. Then we present a large-scale numerical simulation of structure formation, including the largest volume to date involving a time-varying equation of state. We find the halo mass function is well described by the Jenkins et al. mass function formula. We also show how to interpret modifications of the Friedmann equation in terms of a time-variable equation of state. The results presented here provide steps toward realistic computation of the effect of dark energy in cosmological probes involving large-scale structure, such as cluster counts, the Sunyaev–Zel'dovich effect or weak gravitational lensing.
Citation
Linder, E., & Jenkins, A. (2003). Cosmic structure growth and dark energy. Monthly Notices of the Royal Astronomical Society, 346(2), 573-583. https://doi.org/10.1046/j.1365-2966.2003.07112.x
Journal Article Type | Article |
---|---|
Publication Date | 2003-12 |
Deposit Date | Apr 28, 2008 |
Publicly Available Date | Apr 28, 2008 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 346 |
Issue | 2 |
Pages | 573-583 |
DOI | https://doi.org/10.1046/j.1365-2966.2003.07112.x |
Keywords | Gravitation methods, Numerical cosmological parameters. |
Public URL | https://durham-repository.worktribe.com/output/1591905 |
Files
Other material
(670 Kb)
PDF
You might also like
FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning.
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
The Milky Way’s plane of satellites is consistent with ΛCDM
(2022)
Journal Article
Higher order initial conditions with massive neutrinos
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search