T. Dokchitser
Numerical verification of Beilinson's conjecture for K_2 of hyperelliptic curves
Dokchitser, T.; de Jeu, R.; Zagier, D.
Authors
R. de Jeu
D. Zagier
Abstract
We construct families of hyperelliptic curves over Q of arbitrary genus g with (at least) g integral elements in K-2. We also verify the Beilinson conjectures about K-2 numerically for several curves with g = 2, 3, 4 and 5. The first few sections of the paper also provide an elementary introduction to the Beilinson conjectures for K-2 of curves.
Citation
Dokchitser, T., de Jeu, R., & Zagier, D. (2006). Numerical verification of Beilinson's conjecture for K_2 of hyperelliptic curves. Compositio Mathematica, 142(2), 339-373. https://doi.org/10.1112/s0010437x05001892
Journal Article Type | Article |
---|---|
Publication Date | Mar 1, 2006 |
Deposit Date | May 23, 2008 |
Publicly Available Date | Feb 11, 2010 |
Journal | Compositio Mathematica |
Print ISSN | 0010-437X |
Electronic ISSN | 1570-5846 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 142 |
Issue | 2 |
Pages | 339-373 |
DOI | https://doi.org/10.1112/s0010437x05001892 |
Keywords | K-theory, Regulator, L-function, Curve, Torsion points. |
Public URL | https://durham-repository.worktribe.com/output/1591409 |
Files
Published Journal Article
(503 Kb)
PDF
Copyright Statement
This paper has been published by Cambridge University Press in "Compositio mathematica"
(142:2 (2006) 339-373).
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=414275
Copyright © Foundation Compositio Mathematica 2006.
You might also like
Further counterexamples to a conjecture of Beilinson
(2008)
Journal Article
A remark on the rank conjecture
(2002)
Journal Article
The syntomic regulator for the K-theory of fields
(2003)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search