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Numerical verification of Beilinson’s conjecture

for K2 of hyperelliptic curves

Tim Dokchitser, Rob de Jeu and Don Zagier

Abstract

We construct families of hyperelliptic curves over Q of arbitrary genus g with (at least)
g integral elements in K2. We also verify the Beilinson conjectures about K2 numerically
for several curves with g = 2, 3, 4 and 5. The first few sections of the paper also provide
an elementary introduction to the Beilinson conjectures for K2 of curves.

1. Introduction

Let k be a number field, with r1 real embeddings and 2r2 complex embeddings into C, so that
[k : Q] = r1 + 2r2. It is a well-known classical theorem that, if Ok is the ring of algebraic integers
in k, then O∗

k is a finitely generated abelian group of rank r = r1 + r2 − 1. If u1, . . . , ur form a basis
of O∗

k/torsion, and σ1, . . . , σr+1 are the complex embeddings of k up to complex conjugation, then
the regulator of O∗

k is defined by

R =
2r2

[k : Q]

∣∣∣∣∣∣∣det




1 log |σ1(u1)| . . . log |σ1(ur)|
...

...
...

1 log |σr+1(u1)| . . . log |σr+1(ur)|




∣∣∣∣∣∣∣ ,
and one has that

Ress=1ζk(s) =
2r1(2π)r2R|Cl(Ok)|

w
√

∆k
,

where ∆k is the absolute value of the discriminant of k and w the number of roots of unity in k.
As K0(Ok) ∼= Cl(Ok) ⊕ Z and K1(Ok) ∼= O∗

k, so |Cl(Ok)| = |K0(Ok)tor| and w = |K1(Ok)tor|,
this can be interpreted as a statement about the K-theory of Ok, and it is from this point of view
that it can be generalized to ζk(n) for n � 2. Namely, in [Qui73], Quillen proved that Kn(Ok) is a
finitely generated abelian group for all n. Borel [Bor74] computed its rank, showing that this rank is
zero for even n � 2 and is equal to r± for odd n = 2m−1 > 1, where (−1)m = ±1 and r− = r1 +r2,
r+ = r2. Moreover, for those odd n, Borel showed (see [Bor77]) that a suitably defined regulator of
K2m−1(Ok) is a non-zero rational multiple of ζk(m)/πmr∓

√
∆k.

Inspired by this, Bloch [Blo78] considered K2 of elliptic curves E defined over Q with complex
multiplication, and showed that there is a relation between a regulator associated with K2(E) and
the value of L(E, 2). Beilinson then proposed a very general conjecture about similar relations
between certain regulators of K-groups of projective varieties over number fields and values of their
L-functions at integers (see [Sch88, § 5]).
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Those conjectures were tested numerically for K2 of elliptic curves over Q by Bloch and Grayson
[BG86], which led to a modification of Beilinson’s original conjecture, as explained in § 3.
Some further numerical work has been done in this direction, for example, Young carried out
similar calculations for elliptic curves over certain real quadratic number fields (as well as
over Q) in his thesis [You95] and Kimura worked out the case of the genus two curve y2 − y = x5

in [Kim96].
The goal of this paper is to verify Beilinson’s conjecture numerically for K2 of a number of

hyperelliptic curves over Q of genus greater than 1. The results of the computations support the
predictions of Beilinson’s conjecture in the cases we studied. Specifically, the conjecture states that
the rank of a certain torsion-free abelian group K2(C; Z) associated with the curve C over Q is equal
to the genus g of C, and that the associated regulator (the determinant of a certain g × g-matrix)
is rationally proportional to the appropriately normalized value of L(C, 2) (see § 3). If g > 1 it is
quite difficult to write down enough elements in K2(C; Z), but we give several infinite families of
hyperelliptic curves of genus 2 and 3 and one further infinite family for every genus g � 2, as well
as sporadic examples for g = 4 or 5, for which we can construct at least g elements of K2(C; Z).
For some 200 of those curves we check by computer that the regulator of g of those elements is
non-zero and is related to the L-function of the curve in the expected way. As the verification that
a real number is non-zero can be done numerically, these calculations prove rigorously that the
g elements in question are linearly independent and hence that rk K2(C; Z) � g for these curves.
The relationship between the regulator and L(C, 2), on the other hand, can only be established
numerically to high precision.

Furthermore, the second author has shown, in a sequel to this paper [Jeu05], that in the family
for arbitrary g � 2 there are, for each g, infinitely many non-isomorphic curves for which the
regulator of the g elements is non-zero, thus showing that rk K2(C; Z) � g for those curves.
For a more precise formulation of those (and other) results we refer the reader to Remark 10.11
or [Jeu05].

Our results also provide evidence for the reverse inequality rkK2(C; Z) � g predicted by
Beilinson’s conjecture. Namely, in a number of sporadic examples, and one universal situation
(see Remark 10.13 for the precise list), we actually construct more than g elements of K2(C; Z).
In each case the computer calculations of the regulator suggested a linear dependence over Z for
any g + 1 of our elements. In most cases, including the universal case, these relations could then
be proved; in the few remaining cases we have only a high-precision numerical verification at the
regulator level. As there is no intrinsic reason why the elements we construct should be linearly
dependent when there are more than g of them, these results can be seen as evidence for the
prediction that the rank of K2(C; Z) is at most g.

The structure of the paper is as follows. In §§ 2 and 3 we review the statement of Beilinson’s
conjecture for the case of K2 of curves defined over Q. In the next four sections we show how
to construct curves with interesting elements in K2. In § 8 we deal with a technical condition in
Beilinson’s conjecture, the integrality condition, and in § 9 we discuss how to compute the regulator
numerically. The final section is devoted to examples.

2. Curves and their L-functions (review)

Let C be a non-singular, projective, geometrically irreducible curve over Q of genus g. Its L-function
is the Dirichlet series defined for Re(s) > 3

2 by the Euler product

L(C, s) =
∏

p prime

Lp(C, s),
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where the Euler factor Lp(C, s), for those primes p for which the equations defining C over Q can
be reduced modulo p and still define a smooth curve of genus g over Fp, is defined by the formula

Lp(C, s) = exp
( ∞∑

n=1

(pn + 1 − #C(Fpn))
p−ns

n

)

and is known to be the reciprocal of a polynomial in p−s of degree 2g with constant term 1. For the
remaining (finitely many) primes p, Lp(C, s)−1 is also a polynomial in p−s with constant term 1,
but now of degree at most 2g. Finally, one can associate with the curve C/Q a positive integer N
called its conductor, which plays a role in the expected functional equation of its L-function (see the
following). We omit the precise definitions of the remaining Euler factors and of N as they are a little
complicated and these quantities can be (and in some cases actually were) computed experimentally
by assuming the functional equation rather than from their definitions. This functional equation is
as follows.

Conjecture 2.1 (Hasse–Weil). The function

L∗(C, s) =
N s/2

(2π)gs
Γ(s)gL(C, s)

extends to an entire function of s and satisfies L∗(C, s) = wL∗(C, 2 − s), where w = +1 or −1.

Note that, if this conjecture holds, then L(0)(C, 0) = · · · = L(g−1)(C, 0) = 0 and

L(g)(C, 0)
g!

= lim
s→0

L(C, s)
sg

= L∗(C, 0) = wL∗(C, 2) =
wN

(2π)2g
L(C, 2) �= 0,

because Γ(s) has a pole of order one at s = 0 with residue 1.

Remark 2.2. In this paper we need the value of L(C, s) only at s = 2, where the defining Euler
product is absolutely convergent. However, this convergence is very slow and in practice we will
calculate the value of L(C, 2) numerically later on by assuming that Conjecture 2.1 holds and using
the algorithms described in [Dok04] and [Dok]. These algorithms also compute N , w and the Euler
factors Lp(C, s) for ‘bad’ primes under the assumption that the functional equation of L∗(C, s) holds
for some choices of these quantities from a finite list of possibilities, and at the same time check the
validity of the resulting functional equation for L∗(C, s) to high precision.

3. K-theory, regulators and the Beilinson conjectures

In this section we give definitions of the various K-groups occurring that are more elementary and
explicit than the usual ones, but that are equivalent in our situation. We indicate the relations to
the standard definitions as we go along.

Let F be a field. Then K2(F ) can be defined1 as

F ∗ ⊗Z F ∗/〈a ⊗ (1 − a), a ∈ F, a �= 0, 1〉,
where 〈· · · 〉 denotes the subgroup generated by the elements indicated. The class of a⊗ b is denoted
{a, b}, so that K2(F ) is an abelian group (written additively), with generators {a, b} for a and b in F ∗,

1The actual definition of K2 (of arbitrary rings) is more complicated (see [Mil71, § 5]), and its equivalence for fields
with the definition in terms of the ‘symbols’ {a, b} is a famous theorem of Matsumoto (see [Mil71, Theorem 11.1]).
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and relations

{a1a2, b} = {a1, b} + {a2, b}
{a, b1b2} = {a, b1} + {a, b2}

{a, 1 − a} = 0 if a is in F, a �= 0, 1.

It is a nice exercise to show that these relations imply that {a, b} = −{b, a} and {c,−c} = 0 for a,
b and c in F ∗.

Now consider a (non-singular, projective, geometrically irreducible) curve C defined over Q.
Associated to C are K-groups Kn(C) whose definition is a little complicated, but for this paper we
need only a certain quotient group2 KT

2 (C) of K2(C) (‘T ’ for ‘tame’), which can be described in a
simpler way. Set

KT
2 (C) = ker

(
K2(F ) T−→

⊕
x∈C(Q)

Q
∗
)

,

where F = Q(C) is the function field of C and where the x-component of the map T is the tame
symbol at x, defined by

Tx : {a, b} 
→ (−1)ordx(a)ordx(b) a
ordx(b)

bordx(a)
(x). (3.1)

Note that this definition makes sense because aordx(b)/bordx(a) has order zero at x and hence is
defined and non-zero at x. It is clear that Tx is a map on F ∗ ⊗Z F ∗, and checking that it is trivial
on the elements a⊗ (1− a) for a �= 0, 1 is a good exercise (which also explains why we want to have
the power of −1 in the formula), so Tx defines a map on K2(F ).

We note that if α is an element of K2(Q(C)), then∏
x∈C(Q)

Tx(α) = 1, (3.2)

a result known as the product formula (see [Bas68, Theorem 8.2]).
Beilinson, generalizing work by Bloch [Blo78], defined regulators of the K-groups of C

(see [Sch88]). We will describe these in elementary terms for KT
2 (C).

We start with a map from F ∗ × F ∗ to the group of almost everywhere defined 1-forms on the
Riemann surface X = C(C) by putting

η(a, b) = log |a|d arg b − log |b|d arg a, (3.3)

where arg a is the argument of a. Note that this is well defined (the argument arg is defined up to
multiples of 2π, but these map to zero under d) and is a smooth (indeed, real-analytic) 1-form on
the complement of the set of zeros and poles of a and b. It is clear that η(a1a2, b) = η(a1, b)+η(a2, b)
and η(a, b1b2) = η(a, b1) + η(a, b2), so that η induces a map (still denoted by η) on F ∗ ⊗Z F ∗. Also,
η(a, b) is closed, as dη(a, b) = Im(d log a ∧ d log b) = 0.

For any smooth closed 1-form ω defined on the complement of a finite set S ⊂ X and any smooth
oriented loop γ in X \ S, we have a pairing

(γ, ω) =
1
2π

∫
γ
ω

which depends only on the homology class of γ in X \ S. As γ moves across a point x in S, the
value of (γ, ω) jumps by (Cx, ω), where Cx denotes a small circle around x. A simple calculation

2Usually denoted by H0(C,K2).
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shows that (Cx, η(a, b)) = log |Tx({a, b})|. It follows that if α =
∑

i ai ⊗ bi is an element of F ∗⊗ZF ∗

such that Tx(α) = 1 for all x in X, then (·, η(α)) is a well-defined map from H1(X; Z) to R.
Next, one has to check that this map vanishes if α = a ⊗ (1 − a) and hence gives us a pairing

〈·, ·〉 : H1(X; Z) × KT
2 (C) → R

given by 〈γ, α〉 = (γ, η(α)). This follows from the fact that η(a, 1 − a) = dD(a), where D(z) is the
Bloch–Wigner dilogarithm function.

Finally, we observe that, if c denotes complex conjugation on X, then c∗(η(α)) = −η(α) for
any α in KT

2 (C), as c∗(log |a|) = log |a| and c∗(d arg b) = −d arg b: a and b are in Q(C)∗, so
(c∗b)(z) = b(z) = b(z). This means that if γ is in H1(X; Z)+, the c-invariant part of H1(X; Z), then
〈γ, α〉 = 0 for any α in KT

2 (C):

〈γ, α〉 =
1
2π

∫
γ
η(α) =

1
2π

∫
c◦γ

η(α) =
1
2π

∫
γ
c∗(η(α)) = − 1

2π

∫
γ
η(α) = −〈γ, α〉.

We therefore have to compute 〈γ, α〉 only for γ in H1(X; Z)/H1(X; Z)+. In practice, we can just as
well compute it for all γ in H1(X; Z)−, the anti-invariants in H1(X; Z) under the action of c, giving
us finally the regulator pairing

〈·, ·〉 : H1(X; Z)− × KT
2 (C)/torsion → R. (3.4)

It is easy to see that H1(X; Z)− has rank g. Beilinson originally conjectured3 that the rank of
KT

2 (C)/torsion was also equal to g, that the pairing in (3.4) was non-degenerate, and that there
was a relation between L(C, 2) and the absolute value of the determinant of the matrix of this
pairing with respect to bases of H1(X, Z)− and KT

2 (C)/torsion. Unfortunately, this conjecture was
wrong, as KT

2 (C)/torsion can already have rank larger than g for g = 1, as was discovered by Bloch
and Grayson in [BG86]. They found that one should consider a certain subgroup of KT

2 (C)/torsion
defined by an additional condition, which we now proceed to describe.

The extra condition comes from the fact that one should not consider the curve over Q, but
instead a model of it over Z. This is analogous to the situation in § 1, where one has to consider
K1(Ok) ∼= O∗

k instead of K1(k) ∼= k∗ in order to get the correct regulator.
So let C be a regular proper model of C over Z, i.e. a regular, proper, irreducible two-dimensional

scheme over Z such that the generic fiber CQ is isomorphic to C (see, e.g., [Liu02, ch. 10]). For each
prime p, let Cp be the fiber of C over Fp. For each irreducible component D of the curve Cp, let
Fp(D) denote its field of rational functions over Fp. Then we define

KT
2 (C) = ker

(
KT

2 (C) →
⊕

p,D⊆Cp

Fp(D)∗
)

, (3.5)

where the map to Fp(D)∗ is given as follows. The order of vanishing along D gives rise to a discrete
valuation, vD, on F . The component for D of the map in (3.5) is given by the corresponding tame
symbol

TD : {a, b} 
→ (−1)vD(a)vD(b) a
vD(b)

bvD(a)
(D), (3.6)

in complete analogy with (3.1). Finally, we set

K2(C; Z) = KT
2 (C)/torsion, (3.7)

3Strictly speaking, Beilinson conjectured KT
2 (C)⊗ZQ to have dimension g over Q. However, KT

2 (C)/K2(Q) is expected
to be finitely generated by virtue of a conjecture of Bass, and as K2(Q) is a torsion group, this would imply the
equivalence of Beilinson’s formulation and our formulation.
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a subgroup of KT
2 (C)/torsion. This group, sometimes denoted by K2(C)Z/torsion (cf. [Sou86, § 3.3]),

is independent of the choice of the regular proper model C of C (see [Sch88, p. 13]), justifying the
notation.

Remark 3.8. We could have defined KT
2 (C) in a single step as

KT
2 (C) = ker

(
K2(F ) →

⊕
D

F(D)∗
)

, (3.9)

where D runs through all irreducible curves on C and F(D) stands for the residue field at D. Any such
D is either ‘vertical’, in which case it is a component of some Cp and TD is the map in (3.6), or else
‘horizontal’, in which case it corresponds to the Gal(Q/Q)-orbit of some x in C(Q) and TD being
trivial is equivalent to Ty being trivial for all y in that Gal(Q/Q)-orbit.

We can now restrict the pairing (3.4) to

〈·, ·〉 : H1(X; Z)− × K2(C; Z) → R, (3.10)

and formulate our description of Beilinson’s conjecture, as modified in accordance with [BG86],
as follows.

Conjecture 3.11. Let C be a non-singular, projective, geometrically irreducible curve of genus g
defined over Q, and let X = C(C). Then:

(1) the group K2(C; Z) is a free abelian group of rank g and the pairing (3.10) is non-degenerate;
(2) let R denote the absolute value of the determinant of this pairing with respect to Z-bases of

H1(X; Z)− and K2(C; Z), and let L∗(C, 0) be defined as in § 2; then L∗(C, 0) = QR for some
non-zero rational number Q.

Remark 3.12. The definition of L∗(C, 0) requires the analytic continuation of L(C, s), but as the
analytic continuation and the expected functional equation of L(C, s) would imply that L∗(C, 0)
is rationally proportional to π−2gL(C, 2), Beilinson’s conjecture could be formulated without any
assumptions about the analytic continuation of L(C, s).

Remark 3.13. In practice, the conjecture is rather intractable, as it seems impossible to compute
K2(C; Z) even after tensoring this group with Q. Indeed, we neither can guarantee finding enough
elements to generate K2(C; Z), nor can we necessarily determine the rank of a subgroup generated
by finitely many elements, as we do not know any practical method for determining whether a given
combination of elements in F ∗ ⊗Z F ∗ can be written as a sum of Steinberg symbols a ⊗ (1 − a).
However, we can try to find g elements in K2(C; Z) and compute R as in the conjecture using those
elements rather than a basis of K2(C; Z). If R is non-zero numerically we can check the relation
with L∗(C, 0) as in Conjecture 3.11. Also, if we have more than g elements αj in K2(C; Z), the
conjecture implies that the maps 〈·, αj〉 : H1(X; Z)− → R should be linearly dependent over Z, and
this can also be checked numerically. Both types of verification will be carried out in § 10.

Remark 3.14. We have restricted ourselves to the statement of Beilinson’s conjecture for a curve
over Q, but the conjecture can be formulated equally well for any number field k. Suppose that
C/k is a (non-singular, projective, geometrically irreducible) curve of genus g. Let Ok be the ring of
integers of k, and let C be a model of C/k over Ok. Then one defines KT

2 (C) as in (3.9), with the sum
over all irreducible curves D in C. Again, for the ‘horizontal’ curves D, the TD correspond to the Tx

for x in C(Q), up to conjugation under Gal(Q/k). Once again, KT
2 (C)/torsion is independent of

the choice of the model C, and is denoted by K2(C; Z). One expects K2(C; Z) ∼= Zg[k:Q]. The main
difference is that the Riemann surface involved will no longer be connected. Instead, let X be
the Riemann surface obtained from all points in C over C, using all embeddings of k into C.
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This is a disjoint union of [k : Q] connected Riemann surfaces, each of genus g. Complex conjugation
acts on this either by swapping conjugate pairs of complex embeddings of k, or by acting on the
Riemann surface corresponding to a real embedding of k. Then H1(X; Z)− ∼= Zg[k:Q], and there is
a pairing H1(X; Z)− × K2(C; Z) → R given by 〈γ, α〉 = (1/2π)

∫
γ η(α). Here η(α) is the 1-form

on X that, if α = {a, b}, is given on the connected Riemann surface corresponding to σ : k → C

by log |aσ|d arg bσ − log |bσ|d arg aσ. (The subscripts indicate that we consider the functions on the
Riemann surface obtained by applying σ to the coefficients involved in a and b.) One again expects
〈·, ·〉 to be non-degenerate, defines R to be the absolute value of the determinant of the matrix
of 〈·, ·〉 with respect to Z-bases of H1(X; Z)− and K2(C; Z), and conjectures that L∗(C, 0) = QR
for some non-zero rational number Q.

4. Constructing elements of K2 from torsion divisors

The first problem in testing Conjecture 3.11 is that it is not at all clear how to construct elements
of KT

2 (C) on a given curve C over Q; that is, how to produce rational functions fi, gi on C such
that

∑
i{fi, gi} has trivial tame symbol at every point of C.

To understand this condition, consider one symbol {f, g} in K2(Q(C)). If div(f) and div(g) have
disjoint support, then this symbol lies in KT

2 (C) if and only if f(P )ordP (g) = 1 for every zero or pole
P of g and g(Q)ordQ(f) = 1 for every zero or pole Q of f . Essentially this says that f = 1 (or a root
of unity, if |ordP (g)| > 1) whenever g has a zero or a pole, and similarly with f and g interchanged.

To try to satisfy these conditions, it is natural to look at functions that have only very few zeros
and poles. The simplest case is given by functions f and g that have only one (multiple) zero and
one (multiple) pole. If one of these points is common for f and g, then it turns out that simply
renormalizing the functions is sufficient to satisfy the tame symbol conditions. For this we use the
product formula (3.2). All of our examples are then based on the following construction.

Construction 4.1. Let C/Q be a curve. Assume P1, P2, P3 ∈ C(Q) are distinct points whose
pairwise differences are torsion divisors. Thus there are rational functions fi with

div(fi) = mi(Pi+1) − mi(Pi−1), i ∈ Z/3Z,

where mi is the order of (Pi+1)− (Pi−1) in the divisor group Pic0(C). We then define three elements
of K2(Q(C)) by

Si =
{

fi+1

fi+1(Pi+1)
,

fi−1

fi−1(Pi−1)

}
, i ∈ Z/3Z.

The functions fi are unique up to constants, so the symbols Si are uniquely defined by the points Pi.
Moreover, they satisfy the tame symbol condition everywhere, as stated in the following lemma.

Lemma 4.2. The Si are elements of KT
2 (C).

Proof. The components of Si are normalized to make the tame symbol trivial at Pi−1 and Pi+1.
By the product formula (3.2) it is also trivial at Pi, this being the only other point in the support
of the divisors of fi−1 and fi+1.

Next we show that the three elements Si generate a subgroup of rank at most 1 of KT
2 (C)/torsion.

Proposition 4.3. We keep the notation of Construction 4.1.

(1) There is a unique element {P1, P2, P3} of KT
2 (C)/torsion such that in this group

Si =
lcm(m1,m2,m3)

mi
{P1, P2, P3}, i = 1, 2, 3.
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(2) The element {P1, P2, P3} is unchanged under even permutations and changes sign under odd
permutations of the points.

Proof. (1) Uniqueness is obvious, so we only need to show existence. Replacing the functions fi by
fi/fi(Pi) if necessary, we can assume that fi(Pi) = 1, so that Si = {fi+1, fi}. Now let

L = lcm(m1,m2) = lcm(m1,m3) = lcm(m2,m3); (4.4)

the three least common multiples are equal as every integer that kills both (Pi)−(Pi+1) and (Pi+1)−
(Pi+2) in Pic0(C) also kills (Pi) − (Pi+2), which is their sum. It follows that L = lcm(m1,m2,m3)
and that the quotients ri = L/mi, i = 1, 2, 3 are pairwise relatively prime. Then div(f ri

i ) =
L(Pi+1) − L(Pi−1), so the function f r1

1 f r2
2 f r3

3 has trivial divisor, and is therefore a constant:

f r1
1 f r2

2 f r3
3 = c. (4.5)

Next, we have, in KT
2 (C),

r1S2 = {f3, f
r1
1 }, r2S1 = {f r2

2 , f3} = −{f3, f
r2
2 },

so

r1S2 − r2S1 = {f3, f
r1
1 f r2

2 } = {f3, cf
−r3
3 } = {f3, (−1)r3c},

because {f3,−f3} is trivial. As the left-hand side is in KT
2 (C), so is {f3, (−1)r3c}. This implies

that c2m3 = 1, so {f3, (−1)r3c} is torsion. Therefore, modulo torsion, for i, j = 1, 2, 3, riSj = rjSi.
Now choose integers α1, α2, α3 such that

∑
αiri = 1 and set T = α1S1 + α2S2 + α3S3. Then

r1T = α1r1S1 + α2r1S2 + α3r1S3 = α1r1S1 + α2r2S1 + α3r3S1 = S1,

and, similarly, r2T = S2 and r3T = S3, all modulo torsion. In particular, the subgroup 〈S1, S2, S3〉
of KT

2 (C)/torsion is generated by the class of T alone.
(2) The first statement follows from the construction in part (1). For the second, let fi be as

above, chosen so that fi(Pi) = 1.
Take P̃1 = P2, P̃2 = P1, P̃3 = P3 and the functions f̃1 = f−1

2 , f̃2 = f−1
1 , f̃3 = f−1

3 , so that
α̃1 = α2, α̃2 = α1 and α̃3 = α3. The corresponding symbols are

S̃1 = {f̃2, f̃3} = {f−1
1 , f−1

3 } = −{f1, f
−1
3 } = {f1, f3} = −{f3, f1} = −S2,

and, similarly, S̃2 = {f−1
3 , f−1

2 } = −S1 and S̃3 = {f−1
2 , f−1

1 } = −S3. Then modulo torsion,

T̃ = α̃1S̃1 + α̃2S̃2 + α̃3S̃3 = −α2S2 − α1S1 − α3S3 = −T.

Proposition 4.6. Let C/Q be a curve and P1, P2, P3, P4 be four distinct points in C(Q) such that
all (Pi) − (Pj) are torsion divisors. Then the four elements

{P1, . . . , P̂i, . . . , P4} (1 � i � 4)

are linearly dependent. More precisely, if mij is the order of (Pi) − (Pj), then

4∑
i=1

(−1)ici{P1, . . . , P̂i, . . . , P4} = 0 (4.7)

holds in KT
2 (C)/torsion with

ci = gcd(mij,mik,mil) ({i, j, k, l} = {1, 2, 3, 4}). (4.8)

Proof. Choose fij with div(fij) = mij(Pi) − mij(Pj). The discussion surrounding (4.5) shows that(
fij

fij(Pk)

)M/mij
(

fjk

fjk(Pi)

)M/mjk
(

fki

fki(Pj)

)M/mki

= 1
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if {i, j, k} ⊂ {1, 2, 3, 4} and M is any integer divisible by 2 lcm(mij ,mjk,mik)2. Choose such positive
M common for all triples {i, j, k} and let Fij = f

M/mij

ij . Then

div(Fij) = M(Pi) − M(Pj) ({i, j} ⊂ {1, 2, 3, 4})
and

Fij

Fij(Pk)
Fjk

Fjk(Pi)
Fki

Fki(Pj)
= 1 ({i, j, k} ⊂ {1, 2, 3, 4}). (4.9)

Also, define elements of KT
2 (C) by

Si,j,k =
{

Fki

Fki(Pj)
,

Fij

Fij(Pk)

}
=

{
Fij

Fij(Pk)
,

Fjk

Fjk(Pi)

}
=

{
Fjk

Fjk(Pi)
,

Fki

Fki(Pj)

}
.

The asserted relation (4.7), but with ci replaced by

c′i =
lcm(mlj ,mlk,mjk)

mljmlkmjk
({i, j, k, l} = {1, 2, 3, 4}), (4.10)

then follows from the statement that, in KT
2 (C)/torsion,

S1,2,3 − S1,2,4 + S1,3,4 − S2,3,4 = 0. (4.11)

To prove (4.11), let f = F14/F14(P2), g = F24/F24(P3) and h = F34/F34(P1). Rescaling if nec-
essary, we may also assume that F12 = fg−1, F23 = gh−1 and F31 = hf−1. Finally, let α =
f(P3), β = g(P1), γ = h(P2). Now we apply (4.9) for {i, j, k} = {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and
{1, 2, 3}. This gives, respectively, that (fg−1)(P4) = β−1, (gh−1)(P4) = γ−1, (hf−1)(P4) = α−1

and αβγ = 1. Finally, using all of these we expand the symbols Si,j,k in terms of the eight generators,

v = ({f, g}, {f, h}, {g, h}, {f, β}, {g, α}, {g, β}, {h, α}, {α, β}).
We find

S1,2,3 = {fg−1/α, gh−1/β} = (1,−1, 1,−1, 1, 1,−1, 1) · v,

−S1,2,4 = {f, g/β} = (−1, 0, 0, 1, 0, 0, 0, 0) · v,

S1,3,4 = {f/α, h} = (0, 1, 0, 0, 0, 0, 1, 0) · v,

−S2,3,4 = {g, h/γ} = (0, 0,−1, 0,−1,−1, 0, 0) · v.

Therefore the left-hand side of (4.11) reduces to one symbol {α, β}. This symbol can also be rewritten
in terms of the original functions. One shows that

{α, β} = ±
{(

fkl(Pi)
fkl(Pj)

)M/mkl

,

(
fil(Pj)
fil(Pk)

)M/mil
}

for all combinations of four distinct indices i, j, k and l with |i − k| = |j − l| = 2. In any case this
element comes from K2 of a number field, which is torsion. Hence, the asserted relation holds.

It remains to show that the numbers ci and c′i defined by (4.8) and (4.10) are proportional.
Equivalently, if γi = vp(ci) and γ′

i = vp(c′i) denote the valuations of ci and c′i at some prime p, then
we must show that γi − γ′

i is independent of i. The numbers γi and γ′
i are given by

γi = min
j �=i

{νij}, γ′
i = max

j,k �=i
{νjk} −

∑
j,k �=i,j<k

νjk (i = 1, 2, 3, 4), (4.12)

where νij denotes vp(mij). If we use the six numbers νij to label the edges of a tetrahedron T in
the obvious way, then the relation (4.4) states that the two largest labels of the sides of any face
of T are equal. From this we find easily that there are two possibilities: if three incident edges of T
have the same label, then, possibly after renumbering, we have ν12 = ν13 = ν14 = a, ν23 = ν24 = b,
ν34 = c for some integers a � b � c, while if this does not happen then, again up to renumbering,
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we have ν13 = ν14 = ν23 = ν24 = a, ν12 = b, ν34 = c with a > b, c. From (4.12) we then find that
(γ1, . . . , γ4) and (γ′

1, . . . , γ
′
4) are given by (a, b, c, c) and (−b − c,−a − c,−a − b,−a − b) in the first

case and by (b, b, c, c) and (−a− c,−a− c,−a− b,−a− b) in the second case, so that in both cases
γi − γ′

i = a + b + c for all i. This completes the proof of Proposition 4.6.

Corollary 4.13. Let C be a curve defined over Q and P1, . . . , Pn ∈ C(Q) points such that all
(Pi) − (Pj) are torsion. Then the subspace of KT

2 (C) ⊗ Q generated by all elements {Pi, Pj , Pk} is
already generated by those of the form {P1, Pi, Pj}.

The corollary implies that the space spanned by the n(n− 1)(n− 2) symbols {Pi, Pj , Pk}, which
already by Proposition 4.3(2) had dimension at most

(n
3

)
, in fact has dimension at most

(n−1
2

)
.

Remark 4.14. If C/Q is a curve, it is sometimes convenient to consider points Pi in C(Q). Then we
have to work in KT

2 (CQ), which is defined as the kernel of the tame symbol (given by (3.1)),

KT
2 (CQ) = ker

(
K2(Q(C)) →

⊕
x∈C(Q)

Q
∗
)

.

The product formula (3.2) still holds for elements in K2(Q(C)). All the results in this section remain
true in this context. Moreover, as the inclusion of Q(C) into Q(C) induces a map from K2(Q(C)) to
K2(Q(C)) and the tame symbol on both groups is given by the same formula, we can check whether
an element in K2(Q(C)) lies in KT

2 (C) using the tame symbol on its image in K2(Q(C)).
In fact, the map K2(Q(C)) → K2(Q(C)) has torsion kernel and we may identify K2(Q(C))⊗Q

with the subspace of K2(Q(C)) ⊗ Q on which Gal(Q/Q) acts trivially. The same statements hold
when we replace K2(Q(C)) by KT

2 (C) and K2(Q(C)) by KT
2 (CQ)

The final result of this section, a strengthening of Corollary 4.13, states that we cannot construct
any more elements of KT

2 (CQ) ⊗ Q using only functions whose zeros and poles differ by torsion
divisors than those already given by Construction 4.1.

Proposition 4.15. Let S ⊆ C(Q) and P0 ∈ S be such that (P )− (P0) is a torsion divisor for all P
in S. Let V be the subspace of KT

2 (C
Q
)⊗Q generated by all elements {P,Q,P0} with P,Q ∈ S and

W the subspace of K2(Q(C))⊗Q generated by all symbols {f, g} with div(f) and div(g) supported
in S. Then

W ∩ KT
2 (CQ) ⊗ Q = V.

Proof. Let ξ =
∑

i{fi, gi} be an element of W ∩ KT
2 (CQ) ⊗ Q. Replacing S with the finite set of

all zeros and poles of the fi and gi, by assumption there exist an integer N > 0 and, for each P ∈
S\{P0}, a function fP ∈ Q(C)∗ with div(fP ) = N(P )−N(P0). Then each fN

i or gN
i is, up to a scalar

factor, a multiplicative combination of the functions fP , so N2ξ is a linear combination of symbols
of the form {fP , fQ}, {fP , c} and {c, c′} with c, c′ ∈ Q

∗. However, {c, c′} = 0 in KT
2 (Q(C)) ⊗ Q

and {fP , fQ} is the sum of {fP , fQ(P )} + {fP (Q), fQ} and a multiple of {P,Q,P0} ∈ V , so ξ can
be written as

∑
P {fP , cP } + ξ′ with ξ′ ∈ V for some constants cP ∈ Q

∗. As the tame symbol
of {fP , cP } at x is c−N

P for x = P and trivial for all other x ∈ C(Q) \ {P0}, the fact that some
multiple of ξ (and, hence, also of ξ−ξ′) has trivial tame symbol everywhere implies that each cP is a
root of unity. Hence ξ ∈ V .

5. Torsion divisors on hyperelliptic curves

Now suppose that C is a hyperelliptic curve of genus g � 1 defined over Q. The hyperelliptic
involution on C determines a double cover φ : C → P1 ramified at 2g + 2 points, the fixed
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points of the involution. Assume that one of these points ∞C is defined over Q. After a change
of coordinates on P1 we can assume that φ(∞C) = ∞P1. Then C gets a model

y2 = c2g+1x
2g+1 + c2gx

2g + · · · + c1x + c0, c2g+1 �= 0, (5.1)

where the polynomial on the right has coefficients in Q and has no multiple roots. This equation
can be seen either as defining a double cover of P1 or as a curve (singular for g > 1) in P2 whose
normalization is C. The point ∞ = ∞C is then the unique point at infinity of this normalization.
The cover φ is given by the function x on C and its ramification points are ∞ and the Tα = (α, 0),
where α runs through the roots of the right-hand side of (5.1) in Q.

We will look for points P such that the divisor (P )− (∞) is m-torsion for some m. Such points
will be called (m-) torsion points. Of course, if P,Q are torsion points, then (P ) − (Q) is also a
torsion divisor. If we succeed in constructing many torsion points Pi, then we get many elements
{∞, Pi, Pj} ∈ KT

2 (C)/torsion by using Proposition 4.3. Below we give some examples of curves with
torsion points.

Example 5.2 (2-torsion). With notation as before, any non-trivial difference (P ) − (Q) for P and
Q among ∞ and the Tα is 2-torsion:

2(Tα) − 2(Tβ) = div
(

x − α

x − β

)
, 2(Tα) − 2(∞) = div(x − α).

So the Tα are 2-torsion points, although not necessarily defined over Q.
Conversely, suppose given an arbitrary curve C over Q and two distinct points P,Q in

C(Q) such that the divisor (P )− (Q) is 2-torsion. Say div(φ) = 2(P )− 2(Q) with φ defined over Q.
Then φ : C → P1 is a double cover defined over Q. It follows that C is hyperelliptic and admits a
model (5.1) with Q = ∞, P among the Tα.

Unfortunately, we cannot use 2-torsion points alone to obtain interesting elements in
KT

2 (CQ)/torsion by the construction of Section 4: the calculation{
x − β

α − β
,
β − α

x − α

}
=

{
x − α

β − α
,
x − β

α − β

}
=

{
x − α

β − α
, 1 − x − α

β − α

}
= 0

shows that {∞, Tα, Tβ} is trivial for any α and β, and Proposition 4.6 (or rather, its analogue
over Q) then shows that the elements {Tα, Tβ , Tγ} also vanish. The 2-torsion points can nevertheless
be used, but only in combination with the torsion points of other orders which we describe next.

Example 5.3 ((2g + 1)-torsion). Assume that the hyperelliptic equation (5.1) has the special form

y2 = cx2g+1 + (bgx
g + · · · + b1x + b0)2 (5.4)

for some c �= 0. We can scale x and y to make c = −1 if desired, which allows a uniform treatment
together with Example 5.6 below. The substitution y 
→ y +

∑
bix

i transforms this equation to

y2 + 2(bgx
g + · · · + b1x + b0)y = cx2g+1. (5.5)

The point O = (0, 0) (corresponding to (0, b0) on the curve (5.4)) lies on this curve and the function y
has divisor (2g + 1)(O) − (2g + 1)(∞), so O is a (2g + 1)-torsion point.

In fact, any curve C as in (5.1) with a non-trivial rational (2g +1)-torsion point O is isomorphic
to a curve of the form (5.4) and hence (5.5). Indeed, given such a curve C, consider the local system

L = H0(C,OC((2g + 1)∞)).

By Riemann–Roch, the dimension of this as Q-vector space is 1 − g + 2g + 1 = g + 2. It is easy to
see that {1, x, . . . , xg, y} is a basis. So for a point O = (xO, yO) ∈ C(Q) the divisor (2g + 1)(O) −
(2g + 1)(∞) is principal if and only if there is an element of L,

h(x, y) = y − b̃gx
g − · · · − b̃1x − b̃0,
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which vanishes to order exactly 2g + 1 at O. (Note that necessarily it cannot be expressed in terms
of x alone because the order of such a function is at most 2g.) Then the curve defined by h(x, y) = 0
can have only the point (xO, yO) in common with C, and after substituting y = b̃gx

g + · · ·+ b̃1x+ b̃0

in (5.1), we see that the equation of the curve is of the form

y2 = c(x − xO)2g+1 + (b̃gx
g + · · · + b̃1x + b̃0)2.

After a translation we can assume xO = 0 and the equation of the curve becomes of the form (5.4)
with O = (0, b0).

Example 5.6 ((2g + 2)-torsion). Similar to the previous example, a curve

y2 = −c2x2g+2 + (cxg+1 + bgx
g + · · · + b1x + b0)2,

with bg, c �= 0 is of the form (5.1) and it has a model

y2 + 2(cxg+1 + bgx
g + · · · + b1x + b0)y = −c2x2g+2.

In this model div(y) = (2g+2)(O)−(2g+2)(∞), so the curve has a (2g+2)-torsion point O = (0, 0).
Scaling y we can assume that c = 1, hence −c2 = −1, allowing a uniform treatment together with
Example 5.3.

As in Example 5.3, one can use the linear system

L = H0(C,OC ((2g + 2)∞))

to show that any curve (5.1) with a rational (2g + 2)-torsion point has a model of this form.

6. Elements of K2 for hyperelliptic curves

In this section we study elements of KT
2 (C) constructed from torsion points on a non-singular

hyperelliptic curve C/Q of genus g. We have seen that using only 2-torsion points is not sufficient
to construct non-torsion elements. So we will use curves which also have rational torsion points of
order 2g + 1 or 2g + 2.

As discussed in Examples 5.3 and 5.6, such a curve C/Q can always be given by an equation of
the form

y2 + f(x)y + xd = 0 (6.1)
in one of the following two cases:

d = 2g + 1, f(x) = bgx
g + · · · + b1x + b0; (6.2a)

d = 2g + 2, f(x) = 2xg+1 + bgx
g + · · · + b1x + b0 and bg �= 0. (6.2b)

This curve is isomorphic to y2 = t(x), where t(x) is the 2-torsion polynomial, t(x) = −xd+f(x)2/4.
As we want C to be non-singular, we assume that t(x) has no multiple roots, and, in particular,
that b0 �= 0.

On the curve (6.1) we have a rational point O = (0, 0) and the divisor d(O)− d(∞) is principal,
namely equal to div(y). There is also a ‘reflected’ d-torsion point O′ = (0,−f(0)), the image of O
under the hyperelliptic involution (x, y) 
→ (x,−y − f(x)).

Moreover, every rational root α of t(x) gives a rational 2-torsion point Tα = (α,−f(α)/2).
All of the pairwise differences of the points O, O′, ∞ and the Tα are torsion divisors. So the results
of § 4 apply and we get elements of KT

2 (C)/torsion, such as

{∞, O, Tα}, {∞, O,O′}, {Tα, Tβ , Tγ}, . . . .

If we replace KT
2 (C) with KT

2 (CQ) then, by Remark 4.14, we can also use points Tα for any root
α ∈ Q of the 2-torsion polynomial t(x), not necessarily rational. The following proposition gives

350



Beilinson’s conjecture for K2 of hyperelliptic curves

relations in KT
2 (CQ) ⊗ Q among these elements. We mention that the two relations involving

{∞, O,O′} were first observed in computer calculations at the regulator level.

Proposition 6.3. Assume g � 2, and let V be the Q-subspace of KT
2 (C

Q
) ⊗ Q generated by

the elements of the form {Pi, Pj , Pk} where Pi, Pj , Pk run through the points ∞, O,O′ and the Tα

for α ∈ Q a root of t(x). Then V is already generated by the elements of the form {∞, O, Tα}.
More precisely, if we write d = 2g + ε with ε = 1 or 2, then we have the relations

{∞, Tα, Tβ} = 0,
{∞, O, Tα} + {∞, O′, Tα} = 0

and

ε{∞, O,O′} =
∑
α

{∞, O, Tα},

together with the symmetry properties of Proposition 4.3 and the tetrahedron relation of
Proposition 4.6.

Furthermore, if f(0)2 = 1, then

{−f(0)y,−x}
is in KT

2 (C), and its class M in KT
2 (C)/torsion satisfies

dM = ε{∞, O,O′}.

Proof. The proof of the first relation was already given in Example 5.2. The other three relations
involve {∞, O, Tα}, {∞, O′, Tα} and {∞, O,O′}. To make these elements explicit from the definitions
in Construction 4.1 and Proposition 4.3 we need to determine the order d′ of (O)−(O′) = 2(O)−2(∞)
and the order d′′α of (O) − (Tα) = (Tα) − (O′) in Pic0(C).

In fact, we have

d′ = d/ε and d′′α = 2d/ε.

Namely, if d = 2g + 1 then d′ = d and if d = 2g + 2 then d′ = d/2. And if d = 2g + 1, then
(O) − (Tα) = [(O) − (∞)] − [(Tα) − (∞)] must have order d′′α = 2d, but if d = 2g + 2 the order can
be d or d/2. However, it can be d/2 = g + 1 only if (g + 1)[(O) − (∞)] = (Tα)− (∞) = (∞)− (Tα),
so that (g + 1)(O) + (Tα) − (g + 2)(∞) is the divisor of some non-zero h in H0(C,OC((g + 2)∞)).
As g � 2, g +2 � 2g, so h lies in H0(C,OC (2g∞)), which has basis {1, x, . . . , xg} (cf. Example 5.3).
However that implies that div(h) is invariant under the hyperelliptic involution whereas (g+1)(O)+
(Tα) − (g + 2)(∞) is not because O �= O′. So d′′α = d/2 is impossible.

Using those values of d′ and d′′α in the definitions we now see that

{∞, O, Tα} =
{

y

−f(α)/2
,

x − α

−α

}
,

{∞, O′, Tα} =
{ −f(x) − y

−f(α)/2
,

x − α

−α

} (6.4)

and

ε{∞, O,O′} =
{

y

−f(0)
,

y + f(x)
f(0)

}
,

where we write elements in KT
2 (C

Q
) for their classes in KT

2 (C
Q
)/torsion.
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The second relation in the proposition now follows from{
y

−f(α)/2
,
x − α

−α

}
+

{−f(x) − y

−f(α)/2
,
x − α

−α

}
=

{
y(f(x) + y)
−f(α)2/4

, 1 − x

α

}

=
{−xd

−αd
, 1 − x

α

}
= d

{
x

α
, 1 − x

α

}
= 0.

In order to prove the third relation, we notice that

2
{

y

−f(α)/2
,
x − α

−α

}
=

{
y2

f(α)2/4
, 1 − x

α

}
=

{
y2

αd
, 1 − x

α

}

=
{

y2

αd
, 1 − x

α

}
− d

{
x

α
, 1 − x

α

}
=

{
y2

xd
, 1 − x

α

}
, (6.5)

so that taking the sum over all roots α ∈ Q of t(x) gives∑
t(α)=0

{
y2

xd
, 1 − x

α

}
=

{
y2

xd
,

∏
t(α)=0

(
1 − x

α

)}
=

{
y2

xd
,

t(x)
t(0)

}
=

{
y2

xd
,

(y + f(x)/2)2

f(0)2/4

}
, (6.6)

where we used that t(x) = (y + f(x)/2)2. Also, already in KT
2 (C),

2
{

y

−f(0)
,

y + f(x)
f(0)

}
= 2

{
y

−f(0)
,

y (y + f(x))
f(0)2

}
=

{
y2

f(0)2
,
−xd

f(0)2

}
=

{
y2

xd
,
−xd

f(0)2

}
, (6.7)

so that 2ε{∞, O,O′} − 2
∑

α{∞, O, Tα} is equal to the class in KT
2 (C

Q
)/torsion of{

y2

xd
,
−xd

f(0)2

}
−

{
y2

xd
,

(y + f(x)/2)2

f(0)2/4

}
=

{
y2

xd
,

−xd

(2y + f(x))2

}
. (6.8)

That this last element is zero in KT
2 (C

Q
) can be seen by applying the identity{

a

1 − a
,

a(a − 1)
(1 − 2a)2

}
=

{ (
1 − a

a

)2

, 1 −
(

1 − a

a

)2 }

−
{

a

1 − a
, − a

1 − a

}
− 2{a,−a} + 2{1 − a, a} = 0,

valid in K2 of any field if a, 1−a and 1−2a are non-zero, to a = −y/f(x), so that 1−a = −xd/f(x)y
and 1 − 2a = (2y + f(x))/f(x). This completes the proof of the third relation.

Finally, if f(0)2 = 1, then all the tame symbols TP of {−f(0)y,−x} are trivial for P different
from O = (0, 0), O′ = (0,−f(0)) and ∞, and for those three points we find that

T(0,0)({−f(0)y,−x}) = (−1)d
−f(0)y
(−x)d

∣∣∣∣
(0,0)

= 1,

T(0,−f(0))({−f(0)y,−x}) = (−1)0
−f(0)y
(−x)0

∣∣∣∣
(0,−f(0))

= f(0)2 = 1,

T∞({−f(0)y,−x}) = 1.

The first equation uses that y(y + f(x)) = −xd, so that the function −y/xd equals 1/(y + f(x)) and
therefore assumes the value 1/f(0) at (0, 0). The third equation follows from the first two and the
product formula. Then (6.7) shows that

2d{−f(0)y,−x} = {y2,−xd} = 2
{

y

−f(0)
,

y + f(x)
f(0)

}
in KT

2 (C), so that 2dM = 2ε{∞, O,O′} in KT
2 (C)/torsion. This finishes the proof.
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Remark 6.9. When g = 1, the statements of Proposition 6.3 still hold, but when d = 2g + 2 = 4,
the identity ε{∞, O,O′} =

∑
α{∞, O, Tα} is replaced by

2{∞, O,O′} = {∞, O, Tα} + {∞, O, Tα′} + 2{∞, O, Tβ},
where Tα, Tα′ and Tβ are the points of order 2, and 2(O) − 2(∞) = (Tβ) − (∞) in Pic0(CQ).
The proof is the same, using that

2{∞, O,O′} =
{

y

−f(0)
,
y + f(x)

f(0)

}
, {∞, O, Tγ} =

{
y

−f(γ)/2
,
x − γ

−γ

}
for γ = α or α′, but

2{∞, O, Tβ} =
{

y

−f(β)/2
,
x − β

−β

}
,

and similarly for O′ instead of O in the last two identities. (Here again we write elements in KT
2 (CQ)

for their classes in KT
2 (CQ)/torsion.) In (6.8) one takes 4{∞, O,O′}−2{∞, O, Tα}−2{∞, O, Tα′}−

4{∞, O, Tβ} as the left-hand side, whereas the right-hand side vanishes as before.

Now we return from KT
2 (CQ)/torsion to KT

2 (C)/torsion, the group that we are interested in.
Here we have elements {∞, O, Tα}, where α is a rational root of t(x), but, in fact, we have more.
As made explicit in (6.4), {∞, O, Tα} is the class of an element of KT

2 (C), namely{
y

−f(α)/2
,
x − α

−α

}
.

(If g = 1 and d = 4 this statement has to be slightly modified according to Remark 6.9.) If m(x) is
a rational factor of the 2-torsion polynomial t(x), then the element∑

m(α)=0

{
y

−f(α)/2
,
x − α

−α

}

(where the sum is taken over the roots of m(x) in Q) in KT
2 (CQ) can be shown to come from KT

2 (C).
However, if we multiply it by 2 and use (6.5), then, by a calculation similar to (6.6), we get explicitly
that

2
∑

m(α)=0

{
y

−f(α)/2
, 1 − x

α

}
=

{
y2

xd
,
m(x)
m(0)

}
. (6.10)

This computation shows that we get an element of KT
2 (C) for every rational irreducible factor m(x)

of the 2-torsion polynomial t(x), not just for the linear ones. Thus, we get k explicit elements of
KT

2 (C)/torsion, where k is the number of irreducible rational factors of the 2-torsion polynomial
of the curve in (6.1). This gives a map from Zk to KT

2 (C)/torsion. In summary, we have the following
construction.

Construction 6.11. Let C/Q be given by (6.1), (6.2). Let m1, . . . ,mk be the irreducible factors
in Q[x] (up to multiplication by Q∗) of the 2-torsion polynomial t(x) = −xd + f(x)2/4. To each of
them we associate an element of KT

2 (C)/torsion,

Mj = the class of
{

y2

xd
,
mj(x)
mj(0)

}
, 1 � j � k. (6.12)

Extending by linearity gives a map

Zk −→ KT
2 (C)/torsion

(n1, . . . , nk) 
−→
k∑

j=1

njMj = the class of
{

y2

xd
,

k∏
j=1

mj(x)nj

mj(0)nj

}
.

(6.13)
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In two special cases, the statement of Construction 6.11 can be refined a little. One case is when
f(0)2 = 1, when we can use the class M of Proposition 6.3 to replace the Zk in (6.13) by a larger
lattice of the same rank. The other situation occurs only if d = 2g + 2, when it turns out that there
is always a relation among the Mj (also originally discovered during calculations of the regulators)
and hence the rank of the image is at most k − 1.

Proposition 6.14. Let all notation be as in Construction 6.11.

(1) If f(0) = ±1, then the class M in KT
2 (C)/torsion of {−f(0)y,−x} satisfies

2dM =
k∑

j=1

Mj .

(2) If d = 2g + 2, so that 4t(x) = (f(x) − 2xg+1)(f(x) + 2xg+1), and

f(x) − 2xg+1 = m1 . . . ml, f(x) + 2xg+1 = ml+1 . . . mk

with mj irreducible, then the corresponding classes Mj satisfy

M1 + · · · + Ml = Ml+1 + · · · + Mk.

Proof. Relation (1) follows from the two identities involving ε{∞, O,O′} in Proposition 6.3, (6.4)
and (6.10) (or the corresponding statements in Remark 6.9 if g = 1 and d = 4).

In order to prove relation (2), let H = −y/xg+1, so that H + 1/H = f(x)/xg+1. Then the
relation follows immediately from the fact that, in KT

2 (C),{
y2

xd
,
f(x) − 2xg+1

f(x) + 2xg+1

}
=

{
H2,

H − 2 + 1/H
H + 2 + 1/H

}
= 2

{
H,

(1 − H)2

(1 + H)2

}
= 4{H, 1 − H} − 4{−H, 1 − (−H)} = 0.

Remark 6.15. If we identify K2(Q(C)) ⊗ Q with the Gal(Q/Q)-invariants of K2(Q(C)) ⊗ Q as in
Remark 4.14, and let W ⊆ K2(Q(C)) ⊗ Q be as in Proposition 4.15 (with S = {∞, O,O′, Tα1 , . . . ,
Tα2g+1}, where α1, . . . , α2g+1 are the roots of t(x) in Q, and ∞ playing the role of P0), then we have
that

W ∩ KT
2 (C) ⊗ Q = 〈M1, . . . ,Mk〉Q,

where the Mj are as in Construction 6.11, and 〈· · · 〉Q indicates the Q-vector space they generate.
Therefore, the Mj give us everything in KT

2 (C)⊗ Q that we can get from combinations of symbols
{f, g} where f and g are in Q(C)∗ and div(f) and div(g) are supported in {∞, O,O′, Tα1 , . . . ,
Tα2g+1}.

Namely, Proposition 4.15 shows that V = W ∩KT
2 (CQ)⊗Q is spanned by the {∞, P,Q} where

P and Q are in {O,O′, Tα1 , . . . , Tα2g+1}, and by Proposition 6.3 and its proof those elements can be
expressed in the {∞, O, Tαi} or the {y2/xd, (x − αi)/−αi}. Therefore, if k = Q(α1, . . . , α2g+1), then
the action of Gal(Q/Q) on V factors through Gal(k/Q), and V Gal(Q/Q) is generated by the elements∑

σ∈Gal(k/Q)

σ

({
y2

xd
,
x − αi

−αi

})
=

∑
σ∈Gal(k/Q)

{
y2

xd
,
x − σ(αi)
−σ(αi)

}
= δi

{
y2

xd
,
ni(x)
ni(0)

}
,

where ni(x) is the minimal polynomial of αi over Q and δi · deg(ni(x)) = [k : Q]. As ni(x) is an
irreducible rational factor of t(x), this equals δiMj for some j.

7. Constructing good polynomials
Our goal is to use Construction 6.11 to produce explicit families of hyperelliptic curves C with as
many elements of KT

2 (C) as possible. This comes down to constructing polynomials of
the right form, which we will refer to as ‘good’ polynomials. This is addressed in this section.
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Problem 7.1. Construct (families of) polynomials of the form

t(x) = −xd + f(x)2/4

which have many rational factors and no multiple roots. Here d � 5, and we want that t(x) has
degree d − 1 for d even and degree d for d odd.

Remark 7.2. To get potentially interesting examples for the Beilinson conjecture, we need at least
g = genus(C) linearly independent elements of KT

2 (C)/torsion. Thus we want t(x) to have at
least g rational factors if d = 2g + 1 is odd and at least g + 1 of them if d = 2g + 2 is even
(cf. Proposition 6.14(2)). Such a t(x) is what we will call a good polynomial.

We have seen in Examples 5.3 and 5.6 that, for our purposes, we might just as well consider, for
c �= 0,

t(x) = cx2g+1 + f(x)2 where f(x) = bgx
g + · · · + b1x + b0

when d = 2g + 1, and

t(x) = −c2x2g+2 + f(x)2 where f(x) = cxg+1 + bgx
g + · · · + b1x + b0 with bg �= 0

when d = 2g + 2. It will be more convenient to use those non-normalized versions because we can
sometimes let c play a role in the construction of such t(x).

For the remainder of this section we keep the notation c, d, t(x) and f(x) as above. For d = 5 and
6 we will explain how to describe all such t(x) that factor completely over the rationals. For larger
degrees we will give sporadic examples that factor completely or nearly completely, and also infinite
families of good polynomials (with d = 2g + 2) for all genera g.

One way to produce good polynomials is to start with a general polynomial t(x) and force it to
have given rational roots. We illustrate this with one example.

Example 7.3 (d = 5). Take

t(x) = x5 + (b2x
2 + b1x + b0)2

and force the quintic to have two rational roots, so that we get (at least) three rational factors.
If α is a root of t(x), then −α5 is a square, so α = −r2 for some r ∈ Q. We want t(x) to have

two distinct rational roots −m2 and −n2, so

−m10 + (b2m
4 − b1m

2 + b0)2 = 0 and −n10 + (b2n
4 − b1n

2 + b0)2 = 0.

Taking roots yields

m5 = b2m
4 − b1m

2 + b0 and n5 = b2n
4 − b1n

2 + b0.

(We can take the positive signs by replacing m by −m or n by −n if necessary.) Solve this linear
system for b0 and b1 and set b2 = (k + m2 + mn + n2)/(m + n). Finally, multiply by (m + n)2 to
obtain

(m + n)2t(x) = (m + n)2x5 + ((k + m2 + mn + n2)x2 + (km2 + m2n2 + kn2)x + km2n2)2.

This is a family on three parameters m,n, k ∈ Q although it gives only a two-dimensional fam-
ily of curves y2 = t(x): this equation is homogeneous of multi-degree (1, 1, 2, 2, 5) in (m,n, k, x, y),
so letting m 
→ λm, n 
→ λn, k 
→ λ2k, gives a polynomial that corresponds to an
isomorphic curve. Thus one can, for instance, assume that m,n, k are integers or instead that,
say, m = 1. Note that kmn �= 0 (as otherwise the quintic has a double root α = 0) and
that m �= ±n.
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Remark 7.4. We could also have forced t(x) to have a third rational root α = −l2. This condition
gives a third linear equation for b0, b1 and b2. Then the system can be solved uniquely, producing
a three-parameter family of polynomials with four rational factors, which we do not write down
here. We have been unable to find additional examples in this family for which we could verify
Beilinson’s conjecture, either because the coefficients were too large or because we did not obtain
enough elements in K2(C; Z) of the corresponding curve C. In addition, there is a somewhat neater
construction, which gives more rational roots.

Example 7.5 (d = 5). In degree 5 it is in fact possible to describe the polynomials of the desired form
that factor completely over the rationals as follows. Recall from Example 7.3 that every rational
root of t(x) is of the form −r2 for some rational r, so if t(x) factors completely then we must have

t(x) = x5 + (b2x
2 + b1x + b0)2 =

5∏
i=1

(x + r2
i ).

Assume that the |ri| are pairwise distinct and non-zero (otherwise t(x) has a double root). The two
formulas for t(x) give two factorizations of −t(−x2), and hence

(x5 + b2x
4 − b1x

2 + b0)(x5 − b2x
4 + b1x

2 − b0) =
5∏

i=1

(x − ri)
5∏

i=1

(x + ri).

Call the two quintics on the left q(x) and −q(−x) respectively. Clearly, in every pair ±ri one of the
numbers is a root of q(x) and the other a root of q(−x). By changing the signs of some of the ri if
necessary, we can assume that all of them are roots of q(x). As the quintic q(x) has no x3 and x
terms, Newton’s formulas imply that the numbers si = r−1

i satisfy the two equations
5∑

i=1

si = 0 and
5∑

i=1

s3
i = 0. (7.6)

Conversely, any 5-tuple {si} of non-zero rationals satisfying (7.6) and such that si �= ±sj for i �= j
gives rise to t(x) =

∏
(x + s−2

i ) of the desired form. Note that the tuple {−si} gives the same
polynomial.

Now in order to find rational solutions of (7.6), note that these equations define a cubic surface
in P4. So given two rational solutions to (7.6), the line joining them intersects the surface in a third
point that is also rational. Thus, starting with some obvious solutions such as (a,−a, b,−b, 0) and
its permutations or some other experimentally found small solutions such as

(1, 5,−7,−8, 9), (2, 4,−7,−9, 10), (1, 14,−17,−18, 20), . . . (7.7)

one can construct as many other solutions as one wants by using this ‘chord construction’ and by
scaling and permuting the coordinates.

Remark 7.8. The surface defined by (7.6) is the famous cubic surface of Clebsch and Klein, which
also occurs as a Hilbert modular surface and was studied in detail in [Hir87]. It might be worth
investigating why this surface shows up in this context.

Example 7.9 (d even). Finally, here is a method to produce examples for even d = 2m. First, if

t(x) = −c2x2m + f(x)2/4 = (cxm + f(x)/2)(f(x)/2 − cxm) (7.10)

with f(x) = 2cxm + bgx
g + · · ·+ b0 and cbg �= 0, then we could take the first factor to be of the form

2c(x − ai) . . . (x − am), which gives us at least m + 1 rational factors of t(x). In order to get more
rational factors, it is easier to put f̃(x) = xmf(1/x), so that, with g(x) = f̃(x)/2 + c and k = 2c,

x2mt(1/x) = f̃(x)2/4 − c2 = g(x)(g(x) − k), (7.11)
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and the problem simply becomes finding polynomials g(x) and non-zero constants k such that
g(x) and g(x) − k have no multiple roots and a lot of rational factors. Strictly speaking, we should
also ensure that (7.11) has no constant term and a non-zero linear term, so that (7.10) is of degree
2m − 1, a condition which has to be satisfied to get the correct shape of t(x). However, this can
always be achieved by a translation if there is a rational root.

Scaling g(x) and k does not change our problem, so we can assume g(x) has leading coefficient 1.
If we choose g(x) = (x − b1) . . . (x − bm) we get a family of good polynomials with at least m + 1
rational factors, having b1, . . . , bm and k as parameters. Now the question is how to improve this by
forcing a polynomial of the form

g(x) − k = (x − b1) · · · (x − bm) − k

to have more rational factors. If we choose k =
∏

(−bi), then g(x) − k has a factor x, so we get a
family with at least m + 2 rational factors, namely x, x− b1, . . . , x− bm and the remaining factor of
degree m − 1.

For d = 6 (m = 3) this remaining factor is quadratic. So with a suitable rational parametrization
one can construct a ‘universal’ family of polynomials that factor completely over the rationals.
One example of such a family is given by

g(x) = (x − 1)(x − r − s)(x − rs),
k = rs(r − 1)(s − 1),

g(x) − k = (x − r)(x − s)(x − rs − 1).

For larger degrees, examples can be found as follows. Without loss of generality we may assume
that b1, . . . , bm are integers. Choose bounds B,C and search through all integers −B � b1 < · · · <
bm � B. Let g(x) = (x − b1) . . . (x − bm) and compute g(−C), . . . , g(C − 1), g(C). If a number
k �= 0 occurs more than once in this list of values, then g(x) − k has several integral roots in the
range from −C to C, each of which yields one linear factor. This gives a simple method to look for
polynomials (7.11) with even more rational roots.

We now give a few examples with m = 4 and 5 where both g(x) and g(x)− k factor completely,
sorted according to k. The columns in Table 1(a) below contain k, the roots of g(x) and the roots
of g(x) − k, respectively.

One should note here that such a search produces many more examples than just those in
Table 1(a). The tables actually start as in Table 1(b), but most of the examples are induced in the
sense that, modulo a linear substitution, p(x) = g(x)(g(x) − k) is of the form q(x2) for some q(x)
of degree m. For instance, for the first entry for m = 4 (k = 180) we have

p(x) = (x − 5)(x − 4)(x + 3)(x + 4) · (x − 6)(x − 2)(x + 1)(x + 5)

and, after rearranging the factors, we find that

p(−x + 1
2) = (x − 11

2 )(x − 9
2)(x − 7

2)(x − 3
2)(x + 3

2)(x + 7
2)(x + 9

2)(x + 11
2 )

= x8 − 65x6 +
10979

8
x4 − 164 385

16
x2 +

4322 241
256

.

The curve y2 = t(x) is therefore a cover of an elliptic curve y2 = x4 − 65x3 + · · · . In the same way,
the first two lines for m = 5 simply come from genus 2 curves, which we have already seen in the
cubic surface construction: they are given by the first two 5-tuples in (7.7).

Finally, for m = 6 (g = 5, d = 12) one can easily find several non-trivial examples where
g(x)(g(x) − k) factors completely except for one quadratic factor. It is harder to find non-trivial
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Table 1. Examples with m = 4 and 5 where both g(x) and g(x) − k factor completely, sorted
according to k.

(a)
m = 4 m = 5

k g(x) = 0 g(x) = k k g(x) = 0 g(x) = k

2520 9, 7,−4,−10 11, 2, 0,−11 50 400 12, 11,−1,−6,−14 14, 6, 4,−9,−13
7560 13, 12,−5,−14 16, 7,−2,−15 50 400 14, 10, 1,−9,−15 15, 6, 5,−11,−14

10 080 14, 12,−4,−15 17, 6, 0,−16 110 880 15, 13,−3,−4,−16 17, 8, 4,−9,−15
10 080 17, 14,−9,−17 19, 11,−7,−18 110 880 16, 10,−3,−7,−16 17, 5, 4,−12,−14
12 600 17, 12,−6,−17 19, 8,−3,−18 272 160 17, 16,−1,−7,−20 20, 8, 7,−11,−19
13 860 15, 12,−4,−17 18, 5, 1,−18 327 600 20, 11,−5,−9,−21 21, 5, 4,−15,−19
15 840 15, 14,−3,−17 19, 5, 3,−18 393 120 23, 17,−6,−15,−24 24, 15,−3,−19,−22
18 720 19, 12,−5,−19 21, 7,−1,−20 554 400 21, 19, 2,−11,−24 24, 11, 9,−14,−23
25 200 19, 14,−3,−20 22, 5, 4,−21 554 400 22, 17,−1,−9,−24 24, 11, 6,−13,−23
27 720 21, 12,−5,−22 23, 6, 0,−23 1 058 400 23, 22,−1,−8,−27 27, 13, 8,−13,−26

(b)
m = 4 m = 5

k g(x) = 0 g(x) = k k g(x) = 0 g(x) = k

180 5, 4,−3,−4 6, 2,−1,−5 5040 8, 7,−1,−5,−9 9, 5, 1,−7,−8
360 6, 4,−3,−5 7, 1, 0,−6 10080 9, 7,−2,−4,−10 10, 4, 2,−7,−9
504 7, 5,−4,−6 8, 3,−2,−7 50400 12, 11,−1,−6,−14 14, 6, 4,−9,−13
720 7, 4,−4,−7 8, 1,−1,−8 50400 14, 10, 1,−9,−15 15, 6, 5,−11,−14
...

...
...

...
...

...

examples which factor completely, but they do exist. In the notation of (7.11),the smallest is

(x6 + 2x5 − 787x4 − 188x3 + 150 012x2 − 149 040x − 3 326 400)2 − 3 326 4002

= (x − 22)(x − 20)(x − 18)(x − 12)(x − 10)(x − 1)x(x + 7)(x + 15)(x + 18)(x + 23)(x + 24).

Remark added in proof. The problem of finding (very) good polynomials as in Example 7.9 is
closely related to the famous problem of Prouhet–Tarry–Escott about finding distinct collections
of integers, {a1, . . . , am} and {b1, . . . , bm}, with ai

1 + · · · + ai
m = bi

1 + · · · + bi
m for i = 1, . . . ,m −

1, as then
∏

i(x − ai) −
∏

i(x − bi) is a non-zero integer. We refer the reader to ‘The Prouhet–
Tarry–Escott problem revisited ’ by Borwein and Ingalls [BI94] or to the website of Chen Shuwen
(http://euler.free.fr/eslp/eslp.htm) for surveys of known results on this problem. In particular, the
latter contains ‘non-symmetric’ solutions (corresponding to non-induced in the sense above) up
to m = 8, better than the m = 6 example above. However, it seems that the examples for the
Prouhet–Tarry–Escott problem never satisfy the integrality condition in K-theory that we will
need (see Theorem 8.3) in our application, so that we do not discuss this any further.

We would like to thank Laurent Habsieger and Chris Smyth for pointing out this connection
and providing the above references.

8. Integrality of the elements

Construction 6.11 shows how to construct hyperelliptic curves C/Q with elements in KT
2 (C)/torsion.

However, we are not yet in a position to compute regulators and test Beilinson’s Conjecture 3.11,
because we still need our elements to be integral, that is, to lie in K2(C; Z) ⊆ KT

2 (C)/torsion
(see (3.7)).
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Let C/Z be a regular proper model of C/Q. Recall that an element α of K2(Q(C)) lies in KT
2 (C)

if the tame symbol TP (α) is trivial for all P ∈ C(Q). Recall also that α lies in KT
2 (C) if the tame

symbol is trivial for each irreducible curve D in C; see (3.5) or (3.9). This means that apart from
being trivial for ‘horizontal’ curves (which come from points P ∈ C(Q)), the tame symbol of α
must be trivial for all irreducible components of the fibers Cp of C → Spec Z. This gives additional
conditions on α for all primes p of Z. (However, one can show that, to a given α, one can always
add an element in K2(Q) such that the sum satisfies this condition for each prime p for which the
fiber Cp is smooth over Fp.)

So, in general, given a curve C/Q and α ∈ KT
2 (C) the way to verify that α gives rise to an

element of K2(C; Z) is to find a regular model C/Z and then check that the tame symbol of α
at each ‘vertical’ curve on C is trivial. In practice, finding such a model means starting with any
equation of C with integer coefficients, which defines an arithmetic surface, and performing blow-ups
until we obtain a regular surface. This, however, is a complicated process, so we will try to deduce
integrality from the behavior of α on the original (possibly singular) arithmetic surface.

This can be done in fair generality for the families of examples that we are interested in.
We repeat our notation for the sake of easy reference, so we consider a curve of genus g as
in Construction 6.11, defined by

y2 + f(x)y + xd = 0 (8.1)
in one of the two cases

d = 2g + 1, f(x) = bgx
g + · · · + b1x + b0; (8.2a)

d = 2g + 2, f(x) = 2xg+1 + bgx
g + · · · + b1x + b0 and bg �= 0, (8.2b)

where t(x) = −xd + f(x)2/4 has no multiple roots, so that in particular b0 �= 0. Assume further
that f(x) has integer coefficients, so (8.1) defines an arithmetic surface over Z.

Theorem 8.3. Let C/Q be defined by (8.1) and (8.2), where b0, . . . , bg are integers. Let m(x) ∈ Z[x]
be a non-constant factor, irreducible over Z, of the 2-torsion polynomial t(x) = −xd + f(x)2/4 and
let M be the class of {

y2

xd
,
m(x)
m(0)

}
,

in KT
2 (C)/torsion. We have:

(1) if m(0) = ±1 then M ∈ K2(C; Z);
(2) if there is a prime dividing m(0) but not every bi then nM �∈ K2(C; Z) for any n �= 0.

Moreover;

(3) if b0 = ±1 and M is as in Proposition 6.3, then M is in K2(C; Z) if d = 2g + 1 and 2M is in
K2(C; Z) if d = 2g + 2.

Proof. Denote

M̃ = {f1, f2}, f1 =
y2

xd
, f2 =

m(x)
m(0)

;

then M̃ is an element of KT
2 (C) (see (6.10)) and M is its class in KT

2 (C)/torsion. We shall show
that, for a specific regular proper model C of C, M̃ ∈ KT

2 (C) if m(0) = ±1, so that M ∈ K2(C; Z).
However, for the same model, we shall show that under the assumptions of part (2), TD(M̃) is not
torsion for some irreducible component D of the fiber Cp. Therefore, no non-zero multiple of M can
lie in K2(C; Z) ⊆ KT

2 (C)/torsion, because, up to torsion, KT
2 (C) is a subgroup of KT

2 (C) that does
not depend on the choice of C. Finally, for part (3) we show that {−b0y,−x} or 2{−b0y,−x} is in
KT

2 (C).
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Before we can give the proof proper, we need some preliminaries.
Let p be a prime and F the fiber above p of the arithmetic surface defined by (8.1). It is clear

from the equation that any irreducible component D of F dominates the x-axis and that x, y and
m(x) define rational functions on D that do not vanish identically on it.

We want to know that if p does not divide every bi, then the function y2/xd is non-constant on
every such D. If it were constant, then y2 = kxd on D for some constant k �= 0. So f(x)y = −(k+1)xd

on D and squaring this equation yields f(x)2kxd = (k + 1)2x2d. As D dominates the x-axis, this is
only possible if this is an identity of polynomials, which implies that bgx

g + · · · + b0 = 0 mod p,
contradicting the assumption on the bi.

Let C/Z be the regular model of C/Q obtained from the arithmetic surface defined by (8.1) by
repeatedly blowing up the singularities. If D ⊂ C is an irreducible curve mapping onto D, then the
function f1 = y2/xd is also non-constant along D.

We are now ready to prove part (2). Let p divide m(0) but not every bi. Let D and D be as
above, so that vD(f1) = 0 and vD(f2) < 0. Then the tame symbol TD(M̃) is a non-zero power of f1

and is therefore non-constant and hence non-torsion.
We now move to the proof of part (1) so we assume that m(0) = ±1. Then for any prime p

and irreducible component D of Cp surjecting onto a component D of the fiber above p of (8.1),
vD(f1) = vD(f2) = 0, hence TD(M̃ ) = 1.

However, this does not prove that vD(f1) = vD(f2) = 0 for every component D of the fiber of
C → Spec Z above p: such a D could also map to a singular point of the model (8.1). In this case if,
say, f1 happens to have a zero or a pole passing just through this point, then it can happen that
vD(f1) �= 0.

We claim that at every singular point P of the surface defined by (8.1) either f1 or f2 is regular
and equal to 1. This implies that TD(M̃) = 1 for every irreducible curve D of C mapping to P ,
proving part (1).

In fact, our claim holds for all singular points in the fiber F of (8.1) above a prime p, among
which are those singularities of C that lie above p. In order to see this, first consider the point at
infinity in F . The arithmetic surface defined by (8.1) has a chart at infinity that can be obtained
by letting x = 1/x̃ and y = ỹ/x̃g+1. So for d = 2g + 1, the equation at infinity is

ỹ2 + (bgx̃ + · · · + b1x̃
g + b0x̃

g+1)ỹ + x̃ = 0

and the point at infinity in F (x̃ = ỹ = 0 mod p) is non-singular. If d = 2g + 2, then the equation is

ỹ2 + (2 + bgx̃ + · · · + b1x̃
g + b0x̃

g+1)ỹ + 1 = 0

and the function f1 = ỹ2 is regular and equal to 1 at the point at infinity, (x̃, ỹ) = (0,−1) mod p.
For finite x, if P = (x0, y0) mod p is a singularity of F , then f(x0) = −2y0. Then either x0 �= 0,

in which case f1 is regular and equal to 1 at P from the equation of the curve, or x0 = 0, in which
case f2 is regular and equal to 1 at P because p does not divide m(0). This completes the proof of
part (1).

For part (3), assume that b0 = ±1, so that M is the class in KT
2 (C)/torsion of the element

{−b0y,−x} in KT
2 (C). As above, there can only be a problem at a singular point of the arithmetic

surface defined by (8.1), and that point is a singularity on the fiber F above some prime p. However,
if P = (x0, y0) modulo p is any finite singularity of F , then 2y0 + f(x0) = 0, hence y2

0 = xd
0.

We cannot have (x0, y0) = (0, 0) since this would give ±1 = b0 = f(x0) = −2y0 = 0. Therefore
neither −b0y = ∓y nor −x can have a zero or a pole passing through P , showing that those functions
have trivial valuation along any irreducible curve D in C mapping to P . For d = 2g + 1 we saw
before that the point at infinity of F is non-singular, so that M is in K2(C; Z). For d = 2g + 2
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we consider instead the class 2M of 2{−b0y,−x} = {y2, x} = {y2/x2g+2, x} = {ỹ2, 1/x̃}, and at the
point at infinity of F , (x̃, ỹ) = (0,−1) modulo p, ỹ2 is regular and equal to 1.

Remark 8.4. We cannot drop the assumption in Theorem 8.3(2) that the prime does not divide
each bi, i.e. the unrestricted converse of Theorem 8.3(1) does not hold. In fact, given m(x) as in the
theorem with m(0) = ±1, so that the corresponding M is in K2(C; Z), fix a prime p and a positive
integer s. Then the substitution (x, y) 
→ (p−2sx, p−dsy) transforms C into an isomorphic curve C̃
defined by

y2 + f̃(x)y + xd = 0,
where f̃(x) = pdsf(p−2sx) so that all b̃i are divisible by p. Choosing k � 0 minimally such that
m̃(x) = pkm(p−2sx) is in Z[x], m̃(x) is irreducible in Z[x] and is a non-constant factor of the 2-torsion
polynomial −xd+ f̃(x)2/4 = p2dst(p−2sx). We can ensure that k > 0 by choosing s sufficiently large,
so that p divides m̃(0). Then the class of {y2/xd, m̃(x)/m̃(0)} is in K2(C̃; Z) as it corresponds to M ,
but p divides m̃(0) as well as each b̃i.

9. Computing the Beilinson regulator

Let C be a hyperelliptic curve of genus g over C, so the map φ : C → P1
C has n = 2g + 2 points of

ramification, P1, . . . , Pn, and let X = C(C) be the associated Riemann surface. It is not difficult to
check that a basis of H1(X; Z) consists of liftings to X of simple loops in P1

C around exactly Pi and
Pi+1, for i = 1, . . . , 2g. If a model of C is defined by an equation y2 = f(x) with f(x) in C[x] of
degree 2g + 1 without multiple roots, then the point in C above the point at infinity in this model
will be among the ramification points, and the others will be the points above the roots of f(x) in
C ⊂ P1

C. We therefore work with simple loops in C around exactly two roots of f(x), not passing
through any root of f(x), and lift them to loops on X.

In our case f(x) belongs to Q[x] and hence to R[x], and we want to keep track of the action of
complex conjugation c on X. We will discuss the case when the leading coefficient of f(x) is positive,
which we can always achieve by replacing x with −x if necessary. The set C(R) of real points on X
consists of ∞C together with the points above those x in R ⊂ C where f(x) � 0. In Figure 1, the
latter is indicated by the thick part of R in C, the thick dots being the roots of f(x).

If f(x) has only real roots P1 < P2 < · · · < P2g+1, then let γi be a lift of a loop around P2i and
P2i+1 (i = 1, . . . , g) (this is illustrated in Figure 1(a)), and let δi be a lift of a loop around P2i−1

and P2i (i = 1, . . . , g). As all of the γi have a fixed point under the action of complex conjugation,
which lies above the intersection with the thick part of the real line, it is easy to check that the γi

lie in H1(X; Z)− because complex conjugation reverses the orientation. Also, by shrinking the δi as
much as possible, so that they lift to a subset of C(R), it is easy to see that the δi lie in H1(X; Z)+.
So in this case H1(X; Z) decomposes as a direct sum H1(X; Z)− ⊕ H1(X; Z)+, the γi form a basis
of H1(X; Z)−, and the δi form a basis of H1(X; Z)+.

If f(x) does not have only real roots, let P1, . . . , P2m+1 be the real roots of f(x), and let
Q1, Q1, . . . , Qg−m, Qg−m be its non-real roots, as pairs of complex conjugated numbers with
Im(Qj) > 0. We now define γ1, . . . , γm as lifts of simple loops around P2 and P3, P4 and P5,
. . . , P2m and P2m+1, and γm+1, . . . , γg as lifts of simple loops around Q1 and Q1, Q2 and Q2, etc.,
intersecting the thick part of the real axis as illustrated in Figure 1(b). Then it is easy to check
that γ1, . . . , γg are in H1(X; Z)−. Also, if δ1, . . . , δg are lifts to X of simple loops around P1 and
P2, . . . , P2m−1 and P2m, as well as around P2m+1 and Q1, Q1 and Q2, Q2 and Q3, etc., then the
δj complement the γj to a basis of H1(X; Z). Note that in Figure 2(a) we still have c ◦ δ′ = δ′ as
in the case when f(x) has only real roots, but we do not get a splitting of H1(X; Z) into positive
and negative parts. Namely, if δ is the lift of a loop around P2m+1 and Q1, and γ is the lift of
a loop around Q1 and Q1 passing through the thick part of the real line to the right of P2m+1,
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(a) (b)

Figure 1.

δ γ

δ′

(a) (b)

Figure 2.

then δ − c ◦ δ = γ, with γ in H1(X; Z)−, provided δ and γ are chosen in such a way that they are
in the same branch of C(R) above the thick part of the real line through which both loops in C

pass. (An illustration of this is given on the right of Figure 2(a).) This holds because looping twice
around a single point lifts to the trivial element in H1(X; Z). If we could write δ = δ+ + δ− with
δ± in H1(X; Z)±, then this would lead to 2δ− = δ − c ◦ δ = γ, which is not possible as γ is part of
a basis of H1(X; Z). In summary we find in this case that {γ1, . . . , γg} is a basis of H1(X; Z)−, and
that {δ1, . . . , δg} is a basis of H1(X; Z)/H1(X; Z)−.

For practical purposes, we choose all our loops in C as concatenations of line segments, which
makes computing and parametrizing their lifts to X using the analytic continuation of square roots
particularly easy. Apart from the two types already described (lifts of a simple loop around two
consecutive real roots of f(x), or of a simple loop around two conjugate non-real roots of f(x)
intersecting the thick part of the real line, both illustrated in Figure 1), we also use a third type
in order to avoid getting close to roots of f(x) unnecessarily, thus speeding up the calculations in
numerical integration. If, for example, Q1 = x1 + iy1 and Q2 = x2 + iy2 are two non-real roots of
f(x) that are close together and 0 < y1 � y2, then, keeping a lift of a loop around the pair Q1, Q1

meeting the thick part of the real line, we can replace a lift of a loop around the pair Q2, Q2 with a
loop around both pairs Q1, Q1, Q2, Q2, still meeting the thick part of the real line, as indicated in
Figure 2(b). This is just the sum of (compatible) lifts of a loop around Q1, Q1 and a loop around
Q2, Q2, both meeting the thick part of the real line in a common point. A similar method is used if
more than two non-real roots of f(x) are close together.
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Finally, we choose our loops also such that they do not pass through the image of the
other torsion point under the map φ : X → P1

C. In this way, we can immediately compute
〈γ, {a, b}〉 = (1/2π)

∫
γ η(a, b), with η(a, b) as in (3.3), and integrate numerically over the lifts of

the paths using the analytic continuation of y =
√

f(x) along the paths. The method works quite
well in practice and we can easily obtain 12 or 15 decimals of precision for the regulator.

10. Examples

In this section we test Beilinson’s Conjecture 3.11 as explained in Remark 3.13. We do this for
hyperelliptic curves over Q, of genus 2, 3, 4 and 5. Using the results of § 7, we construct curves of the
form (8.1) and (8.2) whose 2-torsion polynomials have many rational factors. As Construction 6.11
shows, every such rational factor gives an element of KT

2 (C)/torsion. Theorem 8.3 shows which of
these are in K2(C; Z).

Our main sources of examples are the constructions described in Examples 7.3 and 7.9
(or variations of them). Unfortunately, the more sophisticated constructions of Examples 7.4 and 7.5
tend to produce either not enough symbols satisfying the integrality condition or else curves of very
high conductor for which we cannot compute the L-value.

Example 10.1 (genus 2). Taking m = 1 and n = −2 in Example 7.3 yields a one-parameter family
of curves

y2 = x5 + ((k + 3)x2 + (5k + 4)x + 4k)2.

Further, if k is an integer which is divisible by 4, then the curve can be transformed to one of the
form in Theorem 8.3. Thus, write k = −4b with b ∈ Z. The curve is then isomorphic to

Cb : y2 + ((4b − 3)x2 − (5b − 1)x + b)y + x5 = 0.

For non-zero b this is a non-singular genus 2 curve of discriminant

∆(Cb) = 32b7(8b + 3)2(9b3 − 23b2 + 4b − 1).

Its 2-torsion polynomial has three rational factors, namely (up to a constant)

m1 = x − 1,
m2 = 4x − 1,

m3 = x3 − (4b2 − 6b + 1)x2 + (5b2 − b)x − b2.

Recall from Construction 6.11 that each mi gives an element Mi ∈ KT
2 (C)/torsion. Intersecting the

lattice in KT
2 (C)/torsion which they span with K2(C; Z) we obtain a sublattice of integral elements,

ΛM = 〈M1,M2,M3〉 ∩ K2(C; Z).

Using Theorem 8.3 we can determine ΛM exactly by inspecting the constant terms of the mi. We find
that ΛM = 〈M1,M2,M3〉 for b = ±1 and ΛM = 〈M1,M2〉 otherwise.

We can now test Beilinson’s conjecture for this family. We constructed at least two elements
(M1 and M2) of ΛM and we might generally expect them to be linearly independent. If this is the
case, ΛM should be a subgroup of finite index in K2(C; Z), which is supposed to have rank 2 by
the first part of Beilinson’s Conjecture 3.11. The second part would then imply that R(ΛM ), the
regulator computed using a basis of ΛM , is a non-zero rational multiple of L∗(Cb, 0), the leading
coefficient of L(Cb, s) at s = 0. In summary, we expect:

(a) rkZΛM = 2;

(b) R(ΛM ) = QL∗(Cb, 0) for some Q ∈ Q∗.

363



T. Dokchitser, R. de Jeu and D. Zagier

Table 2. Numerical values of the regulator pairing (10.2) on the Mi and the M∗
i .

α M1 M2 M3 = M∗
1 M∗

2 M∗
3

〈γ1, α〉 −0.519 837 −6.055 409 −8.191 279 −96.549 352 0.000 000
〈γ2, α〉 3.243 279 −0.869 701 1.915 254 22.630 553 0.000 000

Note that the prediction rkΛM = 2 implies that in the case b = ±1, where we have ΛM =
〈M1,M2,M3〉, there should be a linear relation among the Mi. Let us illustrate the latter point
in the case b = −1. We can compute the images of the Mi under the regulator pairing (3.10), as
explained in § 9,

α 
−→ (〈γ1, α〉, 〈γ2, α〉) ∈ R2, (10.2)
where γ1 and γ2 form a basis of H1(X; Z)−. As we expect the image to be a lattice of rank 2,
there should be some integral linear combination of the Mi for which the image in R2 vanishes.
Using LLL to look for a small Z-relation between the images in R2, we find that

41M1 + 56M2 − 44M3
?
−→ (0, 0). (10.3)

To make the relation more transparent we complete the vector (41, 56,−44) to a unimodular integral
matrix and make the corresponding change of basis:

M∗
1

M∗
2

M∗
3


 =


 0 0 1

11 15 0
41 56 −44





M1

M2

M3


 .

The numerical values of the regulator pairing (10.2) on the Mi and the M∗
i are then given by

Table 2. This strongly suggests that M∗
3 is in the kernel of (10.2), in which case M∗

3 should be zero
in ΛM by Beilinson’s conjecture. The regulator R(ΛM ) is now obtained as the absolute value of the
determinant of the 2 × 2 matrix that consists of the two columns for M∗

1 and M∗
2 :

R(ΛM ) =
∣∣∣∣−8.191 279 −96.549 352

1.915 254 22.630 553

∣∣∣∣ = 0.456 625.

Numerically, L∗(C−1, 0) ≈ 0.228 312, so L∗(C−1, 0)/R(ΛM ) ≈ 0.500 000, which we ‘recognize’ as the
rational number 1/2. (Here the agreement is to at least 18 digits, which was our working precision
in this example.)

Recall from Theorem 8.3 that for b = ±1 the class M of {−by,−x} also lies in K2(C; Z) and
satisfies 10M = M1 + M2 + M3 by (1) of Proposition 6.14. For b = −1, we can write this as
10M = −175M∗

1 + 15M∗
2 − 4M∗

3 , so if we assume M∗
3 = 0, then 2M = −35M∗

1 + 3M∗
2 is in ΛM

but M is not. In other words, the larger lattice Λ = 〈M1,M2,M3, M〉 in K2(C; Z) contains ΛM as
a sublattice of index 2 and

L∗(C−1, 0)/R(Λ) = 1.000 000 . . .
?= 1.

Table 3 summarizes the computations for the curves Cb with |b| � 10. In the third column we
describe the lattice Λ that we use, and the last column contains the quotient of L∗(Cb, 0) and the
Beilinson regulator R(Λ). In all cases this quotient appears to be a rational number of relatively
small height. For b = ±1 we also include the expected relation between the Mi. (We have not
included the universal relation 10M = M1 + M2 + M3 because similar relations would clog up later
tables.)

Finally, we remark that the Jacobian of each of the curves appearing in Table 3, except for
b = 1, is not isogenous to the product of two elliptic curves, even over Q. This was verified using the
procedure of [CF96, ch. 14, § 4]. In other words, the elements in K-theory and the L-values do not
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Table 3. Genus 2 curves y2 + ((4b − 3)x2 − (5b − 1)x + b)y + x5 = 0.

b Conductor Λ L∗(0) L∗(0)/R(Λ)

−10 22 · 3 · 52 · 7 · 112 · 1031 〈M1, M2〉 161973.283267 50 22 · 3 · 52 · 7
−9 33 · 23 · 8461 〈M1, M2〉 2 647.355 307 802 78 22 · 32

−8 22 · 3 · 61 · 6113 〈M1, M2〉 2 402.407 160 162 13 3 · 23/2
−7 3 · 72 · 53 · 4243 〈M1, M2〉 16 142.835 423 656 98 13 · 19
−6 22 · 33 · 5 · 2797 〈M1, M2〉 1 090.933 883 144 10 2 · 32

−5 3 · 52 · 37 · 1721 〈M1, M2〉 1 602.460 401 406 66 29
−4 22 · 3 · 29 · 312 〈M1, M2〉 196.401 029 351 25 22

−3 33 · 7 · 463 〈M1, M2〉 41.793 138 137 75 1
−2 22 · 3 · 13 · 173 〈M1, M2〉 16.338 030 255 73 1/2
−1 3 · 5 · 37 〈M1, M2, M3, M〉

41M1+56M2−44M3=0

0.228 312 316 65 1

1 3 · 112 〈M1, M2, M3, M〉
4M1−26M2+29M3=0

0.129 849 634 72 1/2

2 22 · 3 · 13 · 19 〈M1, M2〉 1.903 193 175 13 1/22 · 5
3 33 · 47 〈M1, M2〉 0.621 789 756 64 1/2 · 33

4 22 · 3 · 5 · 7 · 223 〈M1, M2〉 42.908 137 312 46 1
5 3 · 52 · 43 · 569 〈M1, M2〉 802.872 627 991 99 24

6 22 · 33 · 172 · 67 〈M1, M2〉 1 575.435 484 398 89 22 · 7
7 3 · 72 · 59 · 1987 〈M1, M2〉 6 154.434 846 378 56 22 · 52

8 22 · 3 · 67 · 3167 〈M1, M2〉 1 788.152 292 472 02 33

9 33 · 5 · 4733 〈M1, M2〉 281.800 833 354 57 22

10 22 · 3 · 52 · 23 · 83 · 293 〈M1, M2〉 85 596.822 531 781 27 · 32

Table 4. Genus 2 curves y2 + (2x3 − 4bx2 − x + b)y + x6 = 0.

b Conductor Λ L∗(0) L∗(0)/R(Λ)

1 24 · 3 · 17 〈M1, M2, M3, 2M〉
10M1−2M2+M3=0

0.352 836 253 18 1/23

2 25 · 3 · 52 · 13 〈M2, M3〉 22.976 784 970 7 1/2
3 24 · 32 · 52 · 7 · 29 〈M2, M3〉 347.644 931 188 2 · 3
4 25 · 3 · 7 · 257 〈M2, M3〉 134.428 839 855 2
5 24 · 3 · 52 · 11 · 401 〈M2, M3〉 2 694.745 516 46 22 · 32

6 25 · 32 · 11 · 13 · 577 〈M2, M3〉 20 021.377 565 2 2 · 3 · 41
8 25 · 3 · 52 · 17 · 41 〈M2, M3〉 1 106.795 923 08 22 · 3

10 25 · 3 · 52 · 7 · 19 · 1601 〈M2, M3〉 416 121.146 2 22 · 3 · 73

12 25 · 32 · 52 · 23 · 461 〈M2, M3 58 663.734 125 8 22 · 33 · 5
13 24 · 3 · 52 · 132 · 541 M2, M3〉 46 380.285 56 2 · 32 · 23
14 25 · 3 · 72 · 29 · 3137 〈M2, M3〉 322 837.497 3 2 · 3 · 467

come from elliptic curves, and the verification of Beilinson’s conjecture does not reduce to the case
of genus 1. The same holds for all the curves in Table 4 (Example 10.5) and the curves in Table 8
(Example 10.8) except for the one with v = {2, 5}.

Notation 10.4. In all of the following examples we keep the same notation as above. For a curve

C : y2 + f(x)y + xd = 0

as in (8.1) and (8.2), denote by mi the rational factors of the 2-torsion polynomial t(x) = −xd +
f(x)2/4. The associated elements of KT

2 (C)/torsion (see (6.12)) are denoted by Mi. Using M or 2M
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to aim for as large a subgroup of K2(C; Z) as possible (see Theorem 8.3) we let

Λ′ =



〈M1, . . . ,Mk〉, f(0) �= ±1,

〈M1, . . . ,Mk, M〉, f(0) = ±1, d = 2g + 1,

〈M1, . . . ,Mk, 2M〉, f(0) = ±1, d = 2g + 2,

and use the sublattice Λ = Λ′ ∩ K2(C; Z) of integral elements. In all of the examples below we can
determine Λ by applying Theorem 8.3. Then we verify numerically that Λ has rank equal to the
genus of C and that the leading coefficient L∗(C, 0) is a rational multiple of the regulator R(Λ)
of Λ. To keep the entries for Λ simple, we did not include the universal relation between M and the
Mi of Proposition 6.14(1) in the tables.

Example 10.5 (genus 2). We can construct another family of genus 2 curves with enough elements
in K2(C; Z) in a way similar to Example 7.9, this time using 6-torsion points. The curves are given
by

y2 + (2x3 − 4bx2 − x + b)y + x6 = 0, b ∈ Z>0.

The 2-torsion polynomial has four rational factors,

m1 = x − b, m2 = 2x − 1, m3 = 2x + 1, m4 = 4bx2 + x − b,

so we get four elements of KT
2 (C)/torsion, again denoted by M1,M2,M3,M4. According to Proposi-

tion 6.14(2) these satisfy the relation M1 +M2 +M3 = M4, so M4 can be dropped. Furthermore, M2

and M3 are always integral, and M1 is for b = 1. The numerical results, and the expected relation
between the Mi when b = 1, are given in Table 4.

Example 10.6 (genus 3). We can look at hyperelliptic genus 3 curves with a rational 7-torsion point
and whose 2-torsion polynomial has two given rational roots (cf. Example 7.3). A special case of
this is the two-parameter family given by

y2 + ((4b − 3)x3 − (4a + 5b − 1)x2 + (5a + b)x − a)y + x7 = 0.

The curves have a rational 7-torsion point (0, 0) and two rational 2-torsion points with x-coordinates
1 and 1/4. The 2-torsion polynomial has three rational factors,

m1 = x − 1,

m2 = 4x − 1,

m3 = x5 − (4b2 − 6b + 1)x4 + (5b2 + 8ab − 2b − 6a)x3 − (b2 + 10ab + 4a2 − 2a)x2

+ (5a2 + 2ab)x − a2.

For a = ±1 and b ∈ Z we thus get three integral symbols and we expect a relation with L∗(C, 0).
Moreover, for a = 1, b = 3 we have a further factorization

m3 = m3,1m3,2 = (x2 − 3x + 1)(x3 − 16x2 + 8x − 1),

so we get four elements of K2(C; Z) and we expect them to be linearly dependent. The numerical
results, and the expected relation for a = 1, b = 3, are summarized in Table 5.

Example 10.7 (genus 4, 5). We can also give some sporadic examples of curves of genus g = 4 and
g = 5, given by

y2 + f(x)y + x10 = 0
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Table 5. Genus 3 curves y2 + ((4b − 3)x3 − (4a + 5b − 1)x2 + (5a + b)x − a)y + x7 = 0.

a, b Conductor Λ L∗(0) L∗(0)/R(Λ)

−1,−6 3 · 5 · 13 · 62773 〈M1, M2, M3, M〉 157.328 459 917 64 2 · 3
−1,−5 2 · 3 · 5 · 34543 〈M1, M2, M3, M〉 13.714 622 355 25 1
−1,−4 33 · 72 · 73 〈M1, M2, M3, M〉 0.999 480 438 65 1/2 · 3
−1,−2 3 · 19 · 1051 〈M1, M2, M3, M〉 0.688 416 170 94 1/2 · 7
−1, 0 3 · 5 · 7 · 997 〈M1, M2, M3, M〉 1.300 282 977 08 1/2 · 3
−1, 1 2 · 3 · 43 · 599 〈M1, M2, M3, M〉 1.857 691 473 59 1/2
−1, 2 33 · 17 · 199 〈M1, M2, M3, M〉 0.950 097 720 24 1/2 · 3 · 5
−1, 3 2 · 3 · 72 · 59 · 599 〈M1, M2, M3, M〉 117.811 398 576 50 22

1, 0 3 · 292 · 71 〈M1, M2, M3, M〉 1.919 316 487 11 1/3
1, 2 3 · 13 · 971 〈M1, M2, M3, M〉 0.416 508 349 91 1/19
1, 3 2 · 3 · 52 · 229 〈M1, M2, M3,1, M3,2, M〉

36M1−111M2−41M3,1+71M3,2=0

0.336 535 188 86 1

1, 4 32 · 7877 〈M1, M2, M3, M〉 0.844 497 587 54 2/3 · 5
1, 5 2 · 3 · 11 · 44071 〈M1, M2, M3, M〉 39.134 759 658 36 2
1, 6 3 · 52 · 19 · 46273 〈M1, M2, M3, M〉 631.409 786 722 21 22 · 5
1, 7 2 · 32 · 479 · 2011 〈M1, M2, M3, M〉 170.284 055 306 97 22

Table 6. Genus 4 curves y2 + f(x)y + x10 = 0.

f(x) Conductor L∗(0) L∗(0)/R(Λ)

2x5 + 2x4 + x3 + x2 − 3x − 1 211 · 53 · 19 · 29 35.858 797 69 1/2
2x5 + 2x4 + 2x3 − 3x2 − 2x + 1 211 · 32 · 17 · 59 5.336 928 011 1/2
2x5 + 3x4 − 3x3 − 2x2 − x − 1 23 · 33 · 5 · 19 · 331 1.865 694 255 1/22 · 3
2x5 + 3x4 − x3 − 4x2 − 3x + 1 23 · 34 · 5 · 7 · 20759 126.428 301 2 1

2x5 + 3x4 + x3 − 3x − 1 24 · 33 · 7 · 11 · 4793 41.293 586 43 1/2
2x5 + 4x4 − 3x3 − 2x + 1 24 · 53 · 7 · 11 · 103 3.546 483 598 1/23

2x5 + 4x4 − x3 − 3x2 − 3x − 1 210 · 3 · 7 · 1051 6.484 247 251 1/23

2x5 + 4x4 − x3 − 3x2 − x + 1 212 · 36 · 13 11.509 019 11 1/22

2x5 + 4x4 + 3x3 − 5x2 − 5x − 1 212 · 3 · 5 · 19 · 79 27.699 395 65 1/2
2x5 + 4x4 + 3x3 + 3x2 − x − 1 212 · 3 · 52 · 23 · 43 89.288 955 69 1
2x5 + 4x4 + 5x3 + 2x2 + 2x + 1 24 · 33 · 72 · 379 2.157 167 657 1/24

Table 7. Genus 5 curves y2 + f(x)y + x12 = 0.

f(x) Conductor L∗(0) L∗(0)/R(Λ)

2x6 + 2x5 − 4x4 − 3x3 − 2x2 + 4x − 1 28 · 34 · 5 · 7 · 11 · 19 0.979 064 464 226 37 1/22 · 33

2x6 + 4x5 − 5x4 − 3x3 + 2x2 − x − 1 27 · 32 · 52 · 107 · 139 2.867 076 084 883 23 1/22 · 3
2x6 + 6x5 − 5x3 − 3x2 + x + 1 216 · 32 · 5 · 132 3.215 180 142 154 84 1/22 · 3

2x6 + 2x5 + 2x4 − x3 − 3x2 − 3x − 1 216 · 3 · 53 · 31 4.047 483 939 207 51 1/23 · 3
2x6 + 2x5 + x3 − 3x2 − x + 1 216 · 34 · 5 · 181 28.411 188 809 46 1/3

with f(x) of degree 5 and

y2 + f(x)y + x12 = 0

with f(x) of degree 6, respectively. These can be found by a brute search for good polynomials with
enough factors in Z[x] with constant term ±1. In all cases that we found, we have exactly g+1 such
factors and the lattice Λ = 〈M1, . . . ,Mg, 2M〉 is of rank g. The examples and the corresponding
numerical results are given in Tables 6 and 7.
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Example 10.8 (arbitrary genus). Finally, we give examples of curves of arbitrary genus g with g
integral symbols. Consider a curve of the form

y2 +
(

2xg+1 ±
g∏

j=1

(vjx + 1)
)

y + x2g+2 = 0, (10.9)

where v1 < · · · < vg are distinct non-zero integers, and we are assuming that the 2-torsion polyno-
mial t(x) has no multiple roots. Then t(x) has at least g + 1 factors in Z[x],

v1x + 1, v2x + 1, . . . , vgx + 1, 4xg+1 ±
g∏

j=1

(vjx + 1). (10.10)

(This is similar to, but different from, the discussion in Example 7.9 because now, in 4t(x) =
−4x2g+2 +f(x)2 = (f(x)−2xg+1)(2xg+1 +f(x)), we decompose the first factor, which has degree g,
rather than the second factor, which has degree g +1, completely into linear factors.) The elements
Mj associated with all irreducible factors in Z[x] are integral by Theorem 8.3, so we get at least
g + 1 elements of K2(C; Z), but we have to take Proposition 6.14(2) into account.

An equation of the form (10.9) is not unique for a given curve. For even g, we may (and will)
assume that the sign ‘±’ in (10.9) is ‘+’, as otherwise we can replace (x, y, {vj}) with (−x,−y,
{−vg+1−j}). On the other hand, for odd g the map (x, y) 
→ (−x, y) gives an isomorphism between
the two curves with the same sign associated with {vj} and {−vg+1−j}.

Also, if we look at the model at infinity by letting y 
→ y/xg+1 and x 
→ 1/x, the equation
becomes

y2 +
(

2 ± x

g∏
j=1

(x + vj)
)

y + 1 = 0.

Now it is clear that translating x by −vj for some j gives an equation of the same shape. In other
words, {vj} and {wj} yield an isomorphic curve whenever {vj} ∪ {0} is a translate of {wj} ∪ {0}.
Thus, after translating by −v1 in case v1 < 0, we can assume that all vj are positive. Combining
this with the above, we see that for odd g, 0 < v1 < · · · < vg and 0 < vg − vg−1 < · · · < vg − v1 < vg

give isomorphic curves, and we have chosen the lexicographically smaller representative in Tables 9
and 10 for genus 3 curves.

We can also look at the cases where the last rational factor in (10.10) is reducible, for instance,
when it has a linear factor ax − 1 with a ∈ Z. Then 1/a is a root of this polynomial, so

g∏
j=1

(vj/a + 1) = ∓4a−g−1.

It follows that a(a + v1) · · · (a + vg) = ∓4, which leaves only finitely many possibilities for a and
the vj . It is easy to see that the only two examples for g > 1 and 0 < v1 < v2 < · · · are

v = {2, 5}, a = −1 and v = {3, 4}, a = −2.

(There is also v = {1, 3, 4}, a = −2 but the resulting curve is singular.) Finally, there is a case for
g = 3 where the last factor of (10.10) splits into two quadratic factors over the rationals, namely
v = {1, 5, 6}. Thus, we have found three examples for which the 2-torsion polynomial t(x) has g + 2
rational factors, all with a ‘+’-sign in (10.9),

v = {2, 5}, −4t(x) = (x + 1)(2x + 1)(5x + 1)(4x2 + 6x + 1),

v = {3, 4}, −4t(x) = (2x + 1)(3x + 1)(4x + 1)(2x2 + 5x + 1),

v = {1, 5, 6}, −4t(x) = (x + 1)(5x + 1)(6x + 1)(x2 + 6x + 1)(4x2 + 6x + 1).
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Table 8. Genus 2 curves y2 + (2x3 + (v1x + 1)(v2x + 1))y + x6 = 0.

v Conductor Λ L∗(0) L∗(0)/R(Λ)

2, 5 23 · 3 · 52 〈M1, M2, M3, 2M〉
39M1−26M2+M3=0

0.246 481 356 638 1/22

2, 4 26 · 11 〈M1, M2, 2M〉 0.339 189 596 082 1/24 · 3
3, 4 24 · 3 · 17 〈M1, M2, M3, 2M〉

9M1−10M2+2M3=0

0.352 836 253 176 1/23

1, 8 2 · 7 · 59 〈M1, M2, 2M〉 0.412 953 201 772 1/23 · 7
1, 2 23 · 107 〈M1, M2, 2M〉 0.372 337 494 391 1/23

1, 4 23 · 3 · 53 〈M1, M2, 2M〉 0.609 341 856 994 1/24

8, 9 2 · 3 · 223 〈M1, M2, 2M〉 0.751 762 610 683 1/22 · 7
2, 3 23 · 3 · 59 〈M1, M2, 2M〉 0.682 403 286 269 1/22 · 3
4, 5 23 · 5 · 79 〈M1, M2, 2M〉 1.466 505 046 768 1/23

1, 3 23 · 3 · 139 〈M1, M2, 2M〉 1.573 797 007 363 1/22

1, 5 24 · 5 · 83 〈M1, M2, 2M〉 3.296 439 983 269 1/22

2, 6 26 · 3 · 37 〈M1, M2, 2M〉 4.318 055 838 622 1/22

5, 8 22 · 3 · 5 · 127 〈M1, M2, 2M〉 4.980 029 782 458 1/2 · 3
1, 9 25 · 3 · 149 〈M1, M2, 2M〉 6.585 355 387 353 1/22

3, 5 23 · 3 · 5 · 229 〈M1, M2, 2M〉 14.988 121 207 002 1
3, 11 22 · 3 · 11 · 229 〈M1, M2, 2M〉 19.618 673 668 593 1/2
4, 8 25 · 997 〈M1, M2, 2M〉 15.361 499 842 059 1/2
4, 6 26 · 3 · 197 〈M1, M2, 2M〉 19.481 730 347 124 1
3, 6 23 · 35 · 23 〈M1, M2, 2M〉 20.448 409 445 891 1
2, 8 26 · 3 · 269 〈M1, M2, 2M〉 24.399 036 028 269 1
2, 10 26 · 52 · 37 〈M1, M2, 2M〉 30.231 463 268 350 1
1, 6 23 · 3 · 5 · 499 〈M1, M2, 2M〉 24.839 835 330 300 3/2
6, 9 23 · 35 · 31 〈M1, M2, 2M〉 33.600 131 091 460 1
3, 7 23 · 3 · 7 · 359 〈M1, M2, 2M〉 25.126 558 038 878 1
7, 8 25 · 72 · 41 〈M1, M2, 2M〉 28.545 427 660 372 3/2
5, 6 23 · 3 · 5 · 733 〈M1, M2, 2M〉 43.322 633 518 831 3
3, 12 24 · 35 · 23 〈M1, M2, 2M〉 42.043 168 670 629 1
1, 7 23 · 3 · 72 · 101 〈M1, M2, 2M〉 59.608 745 714 348 3
2, 7 23 · 5 · 72 · 67 〈M1, M2, 2M〉 63.124 534 380 486 3
4, 7 24 · 3 · 72 · 67 〈M1, M2, 2M〉 76.831 677 676 717 3
6, 8 26 · 3 · 829 〈M1, M2, 2M〉 79.443 510 393 961 3
1, 10 23 · 3 · 5 · 1427 〈M1, M2, 2M〉 88.599 127 797 882 3
3, 8 25 · 3 · 52 · 73 〈M1, M2, 2M〉 87.679 227 492 015 3
4, 9 23 · 3 · 5 · 1907 〈M1, M2, 2M〉 105.425 224 481 666 3
6, 7 23 · 3 · 7 · 1373 〈M1, M2, 2M〉 101.061 871 259 886 2 · 3
2, 9 23 · 3 · 7 · 11 · 191 〈M1, M2, 2M〉 164.650 770 360 786 2 · 3
3, 9 23 · 35 · 199 〈M1, M2, 2M〉 197.318 826 602 911 2 · 3
5, 7 23 · 52 · 7 · 353 〈M1, M2, 2M〉 208.897 958 121 197 32

5, 9 24 · 3 · 5 · 2089 〈M1, M2, 2M〉 212.013 278 144 012 2 · 3
9, 10 23 · 3 · 5 · 5261 〈M1, M2, 2M〉 275.183 140 339 336 22 · 3
8, 10 26 · 5 · 2221 〈M1, M2, 2M〉 417.499 914 032 374 13
1, 11 23 · 5 · 11 · 1619 〈M1, M2, 2M〉 294.450 550 333 465 32

4, 12 25 · 3 · 83 · 103 〈M1, M2, 2M〉 412.225 445 696 365 32

7, 9 23 · 3 · 72 · 11 · 73 〈M1, M2, 2M〉 441.365 714 448 209 3 · 5
2, 11 23 · 3 · 11 · 6053 〈M1, M2, 2M〉 689.050 402 379 536 3 · 7
5, 12 23 · 3 · 52 · 72 · 61 〈M1, M2, 2M〉 860.242 245 920 864 2 · 32

2, 12 26 · 3 · 5 · 2341 〈M1, M2, 2M〉 1 267.775 571 888 346 22 · 32

7, 15 2 · 3 · 52 · 72 · 313 〈M1, M2, 2M〉 1 075.913 430 726 619 2 · 32
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Table 8. Continued.

v Conductor Λ L∗(0) L∗(0)/R(Λ)

8, 17 2 · 3 · 17 · 23321 〈M1, M2, 2M〉 1 201.189 781 491 657 2 · 32

5, 10 23 · 52 · 59 · 263 〈M1, M2, 2M〉 1 440.017 545 464 245 22 · 32

4, 10 26 · 3 · 5 · 17 · 197 〈M1, M2, 2M〉 1 562.214 360 456 082 23 · 5
6, 10 26 · 3 · 5 · 3797 〈M1, M2, 2M〉 1 888.148 590 577 887 24 · 3
4, 13 23 · 3 · 11 · 132 · 89 〈M1, M2, 2M〉 2 048.440 414 253 531 2 · 3 · 7
8, 16 26 · 109 · 601 〈M1, M2, 2M〉 2 029.415 672 068 518 25

4, 14 26 · 5 · 72 · 373 〈M1, M2, 2M〉 3 298.078 842 289 480 26

6, 12 26 · 35 · 431 〈M1, M2, 2M〉 3 779.698 402 282 094 2 · 3 · 13
4, 11 24 · 7 · 11 · 23 · 239 〈M1, M2, 2M〉 3 065.942 241 509 888 23 · 32

3, 10 23 · 3 · 5 · 72 · 1307 〈M1, M2, 2M〉 3 909.737 148 728 376 22 · 33

7, 10 23 · 3 · 52 · 7 · 43 · 59 〈M1, M2, 2M〉 4 653.068 964 642 799 2 · 32 · 7
5, 13 25 · 5 · 13 · 31 · 263 〈M1, M2, 2M〉 8 592.680 376 054 557 23 · 3 · 7
7, 16 25 · 3 · 72 · 4493 〈M1, M2, 2M〉 11 344.672 982 180 578 22 · 32 · 5
5, 11 23 · 3 · 5 · 11 · 26573 〈M1, M2, 2M〉 16 672.060 582 310 110 2 · 33 · 7
6, 14 26 · 3 · 7 · 41 · 677 〈M1, M2, 2M〉 20 507.523 505 991 035 24 · 23
7, 14 23 · 72 · 117541 〈M1, M2, 2M〉 20 242.092 778 779 142 23 · 32 · 5
3, 13 23 · 3 · 52 · 13 · 6553 〈M1, M2, 2M〉 20 094.811 949 554 845 2 · 32 · 52

6, 16 26 · 3 · 5 · 73 · 773 〈M1, M2, 2M〉 26 721.552 091 088 677 24 · 33

6, 15 23 · 35 · 5 · 59 · 101 〈M1, M2, 2M〉 28 628.778 269 858 471 2 · 35

5, 14 23 · 3 · 5 · 7 · 95621 〈M1, M2, 2M〉 32 866.799 798 423 930 2 · 3 · 101
5, 15 23 · 3 · 52 · 29 · 4673 〈M1, M2, 2M〉 41 114.005 206 032 957 24 · 32 · 5
8, 18 26 · 3 · 52 · 73 · 353 〈M1, M2, 2M〉 59 468.612 113 790 229 22 · 3 · 71
6, 13 23 · 3 · 72 · 13 · 17 · 619 〈M1, M2, 2M〉 81 849.542 063 836 685 2 · 33 · 29

In each of the examples, if we associate with these factors elements M1, . . . ,Mg+2 of K2(C; Z) in
the order that the factors are written, we can leave out Mg+2 and still expect a non-trivial relation
between the remaining elements. Such a relation was indeed found numerically in all three cases.

The results are summarized in Tables 8 (genus 2), 9 (genus 3), 10 (genus 3) and 11 (genus 4).
The entries in the tables are sorted according to the conductor. Unfortunately, we cannot compute
the numerical values of L∗(0) for g � 5 for these curves because the conductors become too large.

Remark 10.11. The second author established in [Jeu05] a limit formula for the regulator of
M1, . . . ,Mg (corresponding to v1x+1, . . . , vgx+1) for the curves in Example 10.8 when v1, . . . , vg−1

are fixed and |vg| goes to infinity. It follows that, for every g � 2, there are infinitely many of such
curves for which that regulator does not vanish and rkK2(C; Z) � g. It is also determined precisely
when the curves in Example 10.8 are isomorphic over Q (see [Jeu05, Remark 6.9]), and shown that
the regulator does not vanish (and hence rkK2(C; Z) � g) for infinitely many isomorphism classes
over Q.

Such results are also proven for certain hyperelliptic curves over Q that are similar to those in
Example 10.8, as well as for certain elliptic curves over arbitrary real quadratic fields.

Remark 10.12. All but two of the curves in our tables have distinct conductors and are therefore
pairwise non-isomorphic. The two exceptions are the curve b = 1 of Table 4 and the curve v = {3, 4}
of Table 8, which both have conductor 816. These curves are in fact isomorphic, by mapping (x, y)
to (−x/(2x + 1), y/(2x + 1)3).

Remark 10.13. As mentioned in the introduction, in a number of cases we gave more than g elements
of K2(C; Z) and hence by Conjecture 3.11 expected to find a linear relation among them. In all but
seven cases (two in each of Tables 3 and 8, and one in each of Tables 4, 5 and 9), Propositions 6.3
and 6.14(2) suffice to show that the subgroup Λ of K2(C; Z) has at most the predicted rank g.
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Table 9. Genus 3 curves y2 + (2x4 + (v1x + 1)(v2x + 1)(v3x + 1))y + x8 = 0.

v Conductor Λ L∗(0) L∗(0)/R(Λ)

2, 4, 6 28 · 33 · 13 〈M1, M2, M3, 2M〉 1.237 888 702 787 1/27

1, 3, 4 28 · 32 · 72 〈M1, M2, M3, 2M〉 1.319 632 692 018 1/26

1, 2, 4 26 · 33 · 67 〈M1, M2, M3, 2M〉 1.326 260 789 773 1/25

1, 2, 3 26 · 33 · 73 〈M1, M2, M3, 2M〉 1.360 553 792 128 1/24

1, 5, 6 28 · 33 · 53 〈M1, M2, M3, M4, 2M〉
M1+M2+11M3−12M4=0

9.556 528 296 211 1/2

1, 3, 5 26 · 33 · 5 · 179 〈M1, M2, M3, 2M〉 15.763 316 182 605 1/23

3, 4, 7 28 · 32 · 7 · 113 〈M1, M2, M3, 2M〉 21.282 782 316 338 1/23

1, 2, 5 28 · 33 · 5 · 53 〈M1, M2, M3, 2M〉 18.574 599 809 025 1/22

2, 6, 8 214 · 32 · 17 〈M1, M2, M3, 2M〉 41.533 490 724 724 1/23

2, 3, 5 26 · 32 · 53 · 89 〈M1, M2, M3, 2M〉 72.152 711 581 916 1
1, 2, 6 26 · 33 · 53 · 43 〈M1, M2, M3, 2M〉 105.836 805 455 409 1
1, 3, 6 26 · 32 · 5 · 47 · 73 〈M1, M2, M3, 2M〉 98.432 671 578 138 1/2
2, 3, 6 26 · 32 · 72 · 373 〈M1, M2, M3, 2M〉 113.826 557 165 808 1
1, 3, 7 26 · 32 · 7 · 2837 〈M1, M2, M3, 2M〉 137.788 942 178 887 1
1, 4, 6 26 · 32 · 5 · 5669 〈M1, M2, M3, 2M〉 198.333 924 314 685 3/2
1, 2, 9 27 · 33 · 7 · 883 〈M1, M2, M3, 2M〉 206.791 570 180 633 1
3, 4, 8 25 · 33 · 5 · 72 · 101 〈M1, M2, M3, 2M〉 219.415 523 333 470 1
4, 5, 9 28 · 33 · 53 · 29 〈M1, M2, M3, 2M〉 278.222 780 993 318 1
2, 4, 10 211 · 33 · 5 · 101 〈M1, M2, M3, 2M〉 375.379 161 057 633 1
1, 2, 8 26 · 33 · 7 · 29 · 103 〈M1, M2, M3, 2M〉 429.330 911 878 658 5/2
1, 4, 9 27 · 32 · 5 · 9281 〈M1, M2, M3, 2M〉 554.543 543 287 698 2
1, 3, 9 26 · 32 · 137437 〈M1, M2, M3, 2M〉 831.548 080 326 194 22

1, 5, 8 27 · 33 · 5 · 7 · 659 〈M1, M2, M3, 2M〉 798.968 120 685 204 3
1, 4, 7 28 · 32 · 7 · 5879 〈M1, M2, M3, 2M〉 930.405 544 167 007 5
1, 2, 7 26 · 33 · 5 · 7 · 1999 〈M1, M2, M3, 2M〉 1105.646 745 724 194 23

1, 3, 8 27 · 33 · 53 · 7 · 41 〈M1, M2, M3, 2M〉 1395.300 068 143 365 23

1, 4, 8 25 · 33 · 7 · 21773 〈M1, M2, M3, 2M〉 1402.036 187 242 234 2 · 3
2, 4, 8 211 · 33 · 4093 〈M1, M2, M3, 2M〉 3341.033 608 754 311 22 · 3

Also in these seven cases, the regulator calculations strongly indicate that Λ has rank g, as was
worked out in detail for one of the curves in Example 10.1. We did not try to prove the expected
relation between the Mi, and therefore that the rank of Λ is as predicted by Conjecture 3.11, for any
of the seven cases. Each could, of course, be checked by a finite calculation if it is true: for instance,
the conjectural relation (10.3) states that some non-zero multiple of the element(

y2

x5

)
⊗

(
(1 − x)41(1 − 4x)56

(1 − 6x + 11x2 − x3)44

)
in the tensor square of the multiplicative group of the function field of the curve y2 − (7x2 −
6x + 1)y + x5 = 0 is a combination of tensor products of the form ui ⊗ (1−ui), and if this is indeed
true then one can obviously prove it simply by exhibiting the elements ui. However, in some sense
it is precisely the fact that there is no visible reason for such a relation, apart from the fact that
the rank is not expected to exceed 2 in this case, that provides the strongest experimental support
for Beilinson’s conjecture.

Remark 10.14. One reason we have given detailed results for so many individual curves, apart from
the fact that each example is non-trivial to find and to calculate and that it therefore seemed worth
listing them completely, is that the experimental data about the values of L∗(C, 0)/R(Λ) may be
useful in the future for the formulation or numerical verification of conjectures about this rational
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Table 10. Genus 3 curves y2 + (2x4 − (v1x + 1)(v2x + 1)(v3x + 1))y + x8 = 0.

v Conductor Λ L∗(0) L∗(0)/R(Λ)

1, 2, 3 26 · 3 · 53 · 11 〈M1, M2, M3, 2M〉 2.288 179 184 223 1/23

1, 2, 4 26 · 3 · 53 · 23 〈M1, M2, M3, 2M〉 5.368 903 572 985 1/23

1, 2, 5 27 · 3 · 5 · 433 〈M1, M2, M3, 2M〉 8.855 164 567 689 1/23

2, 4, 6 212 · 3 · 53 〈M1, M2, M3, 2M〉 19.749 659 522 297 1/23

3, 4, 8 25 · 3 · 5 · 7 · 19 · 31 〈M1, M2, M3, 2M〉 21.559 124 747 863 1/24

1, 4, 5 210 · 3 · 5 · 7 · 23 〈M1, M2, M3, 2M〉 22.811 436 896 592 1/22

1, 3, 5 26 · 3 · 5 · 3797 〈M1, M2, M3, 2M〉 42.967 686 126 549 1/2
2, 3, 7 27 · 3 · 5 · 7 · 397 〈M1, M2, M3, 2M〉 53.453 545 184 856 1/22

1, 2, 10 26 · 3 · 5 · 11 · 523 〈M1, M2, M3, 2M〉 57.955 617 125 753 1/22

2, 3, 6 26 · 32 · 53 · 7 · 17 〈M1, M2, M3, 2M〉 114.624 730 232 758 3/22

1, 2, 8 26 · 3 · 53 · 7 · 67 〈M1, M2, M3, 2M〉 122.595 870 053 997 3/22

1, 2, 6 26 · 3 · 5 · 14731 〈M1, M2, M3, 2M〉 125.574 116 230 804 5/22

1, 5, 6 27 · 3 · 52 · 412 〈M1, M2, M3, 2M〉 140.322 800 930 811 1
1, 2, 9 26 · 3 · 53 · 7 · 113 〈M1, M2, M3, 2M〉 196.848 432 921 070 1
2, 3, 5 26 · 33 · 5 · 133 〈M1, M2, M3, 2M〉 190.825 343 100 486 2
3, 4, 9 27 · 32 · 5 · 3847 〈M1, M2, M3, 2M〉 227.021 533 461 314 1
3, 4, 7 210 · 33 · 53 · 7 〈M1, M2, M3, 2M〉 242.380 339 993 035 1
2, 3, 8 26 · 33 · 5 · 29 · 103 〈M1, M2, M3, 2M〉 279.394 212 255 531 1
2, 3, 9 26 · 32 · 53 · 7 · 61 〈M1, M2, M3, 2M〉 357.850 908 392 946 2
2, 4, 8 211 · 3 · 53 · 53 〈M1, M2, M3, 2M〉 551.668 430 135 999 2
3, 5, 6 26 · 32 · 5 · 21737 〈M1, M2, M3, 2M〉 756.149 101 085 614 2 · 3
1, 4, 7 27 · 32 · 53 · 7 · 109 〈M1, M2, M3, 2M〉 1246.076 904 950 150 2 · 3
2, 6, 8 215 · 33 · 53 〈M1, M2, M3, 2M〉 1351.447 382 022 975 22

1, 4, 6 26 · 33 · 5 · 18679 〈M1, M2, M3, 2M〉 1854.823 840 399 464 22 · 3
1, 2, 7 26 · 3 · 5 · 7 · 47 · 569 〈M1, M2, M3, 2M〉 1970.441 147 103 680 3 · 5
1, 3, 9 26 · 32 · 53 · 4273 〈M1, M2, M3, 2M〉 3214.588 641 563 687 2 · 7

Table 11. Genus 4 curves y2 + (2x5 + (v1x + 1) · · · (v4x + 1))y + x10 = 0.

v Conductor Λ L∗(0) L∗(0)/R(Λ)

1, 2, 3, 4 29 · 32 · 17 · 113 〈M1, M2, M3, M4, 2M〉 2.497 987 723 694 1/25 · 5
2, 3, 4, 6 28 · 32 · 80251 〈M1, M2, M3, M4, 2M〉 45.006 091 920 102 1/25

1, 2, 3, 5 29 · 32 · 5 · 10007 〈M1, M2, M3, M4, 2M〉 68.192 003 860 287 1/23

number analogous to the Lichtenbaum conjectures in the case of Kn of number fields. We will not
make any attempt to give such conjectures. We do note, however, that we often find an integer
for L∗(C, 0)/R(Λ). So it might be that L∗(C, 0)/R(K2(C; Z)) is always an integer, and that the
denominators that occur in L∗(C, 0)/R(Λ) for some of our examples can be explained by the fact that
Λ is not the full group K2(C; Z) because L∗(C, 0)/R(K2(C; Z)) = (K2(C; Z) : Λ) · L∗(C, 0)/R(Λ).
This would be similar to what happens in the discussion of the case of b = −1 in Example 10.1, where
ΛM = 〈M1,M2,M3〉 leads to L∗(C, 0)/R(ΛM ) ?= 1/2, but the larger lattice Λ = 〈M1,M2,M3, M〉,
with (Λ : ΛM ) = 2, gives L∗(C, 0)/R(Λ) ?= 1.

Unfortunately, we have not been able to test this as we do not know any systematic ways to
construct elements of K2(C; Z) other than those we discussed. However, it would be interesting
to do this, especially for the curve defined by

y2 + (5x3 − 13x2 + 7x − 1)y + x7 = 0

(which is the example with a = 1 and b = 2 of Table 5), where the denominator is the relatively
large prime 19.
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France, 3 rue d’Ulm, F-75005 Paris, France

373

mailto:t.dokchitser@dpmms.cam.ac.uk
mailto:rob.de-jeu@durham.ac.uk
mailto:zagier@mpim-bonn.mpg.de

	1 Introduction
	2 Curves and their $L$-functions (review)
	3 $K$-theory, regulators and the Beilinson conjectures
	4 Constructing elements of $K_2$ from torsion divisors
	5 Torsion divisors on hyperelliptic curves
	6 Elements of $K_2$ for hyperelliptic curves
	7 Constructing good polynomials
	8 Integrality of the elements
	9 Computing the Beilinson regulator
	10 Examples
	References

