Roy Quinlan r.a.quinlan@durham.ac.uk
Emeritus Professor
Here we review how GFAP mutations cause Alexander disease. The current data suggest that a combination of events cause the disease. These include: (i) the accumulation of GFAP and the formation of characteristic aggregates, called Rosenthal fibers, (ii) the sequestration of the protein chaperones alpha B-crystallin and HSP27 into Rosenthal fibers, and (iii) the activation of both Jnk and the stress response. These then set in motion events that lead to Alexander disease. We discuss parallels with other intermediate filament diseases and assess potential therapies as part of this review as well as emerging trends in disease diagnosis and other aspects concerning GFAP.
Quinlan, R., Brenner, M., Goldman, J., & Messing, A. (2007). GFAP and its role in Alexander disease. Experimental Cell Research, 313(10), 2077-87
Journal Article Type | Article |
---|---|
Publication Date | 2007 |
Journal | Experimental Cell Research |
Print ISSN | 0014-4827 |
Publisher | Elsevier |
Volume | 313 |
Issue | 10 |
Pages | 2077-87 |
Public URL | https://durham-repository.worktribe.com/output/1566699 |
Publisher URL | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17498694 |
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search