M. Belolipetsky
A bound for the number of automorphisms of an arithmetic Riemann surface
Belolipetsky, M.; Jones, G.
Authors
G. Jones
Abstract
We show that for every g > 1 there is a compact arithmetic Riemann surface of genus g with at least 4(g-1)automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24.
Citation
Belolipetsky, M., & Jones, G. (2005). A bound for the number of automorphisms of an arithmetic Riemann surface. Mathematical Proceedings of the Cambridge Philosophical Society, 138(2), 289-299. https://doi.org/10.1017/s0305004104008035
Journal Article Type | Article |
---|---|
Publication Date | 2005-03 |
Deposit Date | May 22, 2008 |
Publicly Available Date | Mar 31, 2010 |
Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
Print ISSN | 0305-0041 |
Electronic ISSN | 1469-8064 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 138 |
Issue | 2 |
Pages | 289-299 |
DOI | https://doi.org/10.1017/s0305004104008035 |
Public URL | https://durham-repository.worktribe.com/output/1561419 |
Files
Published Journal Article
(124 Kb)
PDF
Copyright Statement
Copyright © Cambridge University Press 2005. This paper has been published by Cambridge University Press in Mathematical proceedings of the Cambridge Philosophical Society (138:2 (2003) 289-299) http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=283520
You might also like
Cells and representations of right-angled Coxeter groups
(2004)
Journal Article
Finite groups and hyperbolic manifolds
(2005)
Journal Article
Counting maximal arithmetic subgroups
(2007)
Journal Article
On volumes of arithmetic quotients of SO(1, n)
(2004)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search