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Abstract

We show that for every g � 2 there is a compact arithmetic Riemann surface of
genus g with at least 4(g − 1) automorphisms, and that this lower bound is attained
by infinitely many genera, the smallest being 24.

1. Introduction

Schwarz [17] proved that the automorphism group of a compact Riemann surface
of genus g � 2 is finite, and Hurwitz [10] showed that its order is at most 84(g −
1). This bound is sharp, by which we mean that it is attained for infinitely many
g, and the least genus of such an extremal surface is 3. However, it is also well
known that there are infinitely many genera for which the bound 84(g − 1) is not
attained. It therefore makes sense to consider the maximal order N (g) of the group
of automorphisms of any Riemann surface of genus g. Accola [1] and Maclachlan [14]
independently proved that N (g) � 8(g + 1). This bound is also sharp, and according
to p. 93 of [2], Paul Hewitt has shown that the least genus attaining it is 23. Thus
we have the following sharp bounds for N (g) with g � 2:

8(g + 1) � N (g) � 84(g − 1).

Wenow consider these bounds from an arithmetic point of view, defining arithmetic
Riemann surfaces to be those which are uniformized by arithmetic Fuchsian groups.
The motivation for this approach can be found in the works of Borel, Margulis and
others on arithmetic groups. Concerning Riemann surfaces with large groups of
automorphisms, the surprising fact, which can easily be seen, is that all the extremal
surfaces for Hurwitz’s upper bound are arithmetic, whereas all the extremal surfaces
for the Accola–Maclachlan lower bound are non-arithmetic. This raises the natural
question: “What can be said about the other two bounds?”
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The non-arithmetic analog of Hurwitz’s upper bound, obtained by the first author
in [3], is 156(g − 1)/7; this bound is sharp, and the least genus attaining it is 50. The
aim of the current paper is to obtain an arithmetic analog of the Accola–Maclachlan
lower bound, namely that for each g � 2 there is an arithmetic surface of genus g
with 4(g − 1) automorphisms, and that this bound is attained for infinitely many g,
starting with 24.
We now collect these results together: definingNar(g) andNna(g) to be the maximal

orders of the automorphisms groups of the arithmetic and non-arithmetic surfaces
of genus g respectively, for sufficiently large g we have sharp bounds

4(g − 1) � Nar(g) � 84(g − 1),

8(g + 1) � Nna(g) � 156
7
(g − 1).

In Section 2 we recall the basic facts about Riemann surfaces and arithmetic
groups. Section 3 contains the proof of the 4(g − 1) lower bound, with a number of
additional remarks. Finally, in Section 4 we use our proof of the 4(g − 1) bound to
describe an infinite set of genera for which the bound is attained, and to prove that
the least genus attaining the bound is 24.

2. Basic facts

In this section we recall some definitions and basic properties of Riemann surfaces
and arithmetic groups. For more information about Riemann surfaces and Fuchsian
groups see [7, 11]. The basic references for quaternion algebras and arithmetic groups
are [12, 20].

Definition 2·1. ARiemann surface is a connected one-dimensional complex analytic
manifold. An automorphism of a Riemann surface is an analytic mapping of the
surface onto itself.

In this paper we shall consider only compact Riemann surfaces of genus g � 2. By
the uniformization theorem [7, chapter IV] each such surface S can be represented
as the quotient space H/ΓS , where H is the hyperbolic plane and ΓS is a cocompact
torsion-free discrete subgroup of the group Isom+(H) = PSL(2,R) of orientation-
preserving isometries of H. This group ΓS , called the surface group corresponding to
S, is unique up to conjugacy in PSL(2,R) and is finitely generated.
Discrete subgroups of PSL(2,R) are called Fuchsian groups. Each cocompact

Fuchsian group Γ has a signature σ = (g;m1, . . . , mk), where g is a non-negative
integer, equal to the genus of H/Γ, and each mj is an integer greater than 1, indic-
ating a cone-point of order mj in H/Γ. This signature corresponds to the canonical
presentation for Γ:

Γ(g;m1, . . . , mk) =

〈
α1, β1, . . . , αg, βg, γ1, . . . , γk |

g∏
i=1

[αi, βi]
k∏

j=1

γj = 1, γ
mj

j = 1

〉
.

If g = 0 we shall omit g from σ, and write (m1, . . . , mk).
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We define μ(Γ) to be the hyperbolic measure of H/Γ; it can be expressed in terms
of the signature:

μ(Γ) = μ(g;m1, . . . , mk) = 2π

(
2g − 2 +

k∑
j=1

(
1− 1

mj

))
. (1)

By the Riemann–Hurwitz formula if Γ′ is a subgroup of index n in Γ we have:

μ(Γ′) = n · μ(Γ).

The automorphisms of a Riemann surface S lift to the isometries ofH normalizing
the surface group ΓS , so S has automorphism group

Aut (S)�N (ΓS)/ΓS

where N (ΓS) is the normalizer of ΓS in PSL(2,R).
In our investigations we often need to construct a Riemann surface S with a given

Fuchsian group Γ normalizing its surface group ΓS . In order to do this one has
to find a torsion-free normal subgroup of finite index in Γ, or equivalently to find
an epimorphism from Γ onto some finite group G with a torsion-free kernel. We
call such an epimorphism a surface-kernel epimorphism, or SKE for short. In these
circumstances Aut (S) has a subgroup isomorphic to G. It is known that in any
Fuchsian group all elements of finite order are conjugate to powers of the elliptic
generators in a canonical presentation of the group. Hence, in order to verify that a
given epimorphism is a SKE, one has only to check that the orders of these generators
are preserved.
Now we introduce a special class of Riemann surfaces, which we call arithmetic

surfaces.

Definition 2·2. (See [4, 12, 15, 18, 20].) Let A = (a,b
k
) be a quaternion algebra over

a totally real number field k, such that there is an isomorphism ρ from (a,b
R ) to the

matrix algebra M2(R) and such that (
σ(a),σ(b)

R ) � H (Hamilton’s quaternions) for
every non-identity Galois monomorphism σ: k → R. Let O be an order in A, and
let O1 be the group of elements of norm 1 in O. Then any subgroup of PSL(2,R)
which is commensurable with the image in PSL(2,R) of some such ρ(O1) is called
an arithmetic Fuchsian group.

Arithmeticity is invariant under conjugation in PSL(2,R), so the following defin-
ition is valid:

Definition 2·3. A Riemann surface is arithmetic if it is uniformized by an arithmetic
Fuchsian group. All other Riemann surfaces are nonarithmetic.

We finish this section with some examples of arithmetic Fuchsian groups and
Riemann surfaces.

Example 2·1. Triangle groups are Fuchsian groups which have signatures of the
form (m1, m2, m3). Triangle groups with a given signature are conjugate in PSL(2,R)
(this fails for most other signatures), so either all of them or none of them are
arithmetic. Takeuchi first proved that there are only finitely many signatures of
arithmetic triangle groups, and gave the complete list of them in [18]; particularly
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important examples for us are the signatures (2, 3, 7) and (2, 4, 5). In order to obtain
this result Takeuchi used an arithmeticity test which he introduced in the same
paper.

Example 2·2. The orientation-preserving subgroup of the group generated by re-
flections in the sides of a right-angled hyperbolic pentagon Π is a Fuchsian group
Γ of signature (2, 2, 2, 2, 2). If Π can be subdivided into n congruent triangles, so
that whenever two triangles have a common side they are symmetric with respect
to that side, then Γ is a subgroup of index n in the corresponding triangle group.
In particular, if this triangle group is arithmetic then so is Γ. For instance, one can
barycentrically subdivide an equilateral right-angled pentagon into 10 triangles with
angles π/2, π/4 and π/5, and so obtain a (2, 2, 2, 2, 2)-subgroup of index 10 in the
arithmetic (2, 4, 5)-group. However, it is worth noting that among the arithmetic
groups of a given signature there may also be maximal Fuchsian groups, and these
can not be obtained as subgroups of arithmetic triangle groups.

Example 2·3. All surfaces of genus g with 84(g−1) automorphisms (such as Klein’s
quartic) are arithmetic, since they are uniformized by finite index subgroups of the
(2, 3, 7) triangle group, which is arithmetic.

3. The main results

Lemma 3·1. Let {Sg}g∈G be an infinite sequence of arithmetic surfaces of different
genera g, such that for each g ∈ G the group of automorphisms of Sg has order a(g + b)
for some fixed a and b. Then b = −1.

Proof. Let S be a surface from the given sequence. Since Aut (S)�N (ΓS)/ΓS , the
Riemann–Hurwitz formula gives

μ(N (ΓS)) =
μ(ΓS)

|Aut (S)| =
2π(2g − 2)
a(g + b)

,

so μ(N (ΓS))→ 4π/a as g → ∞.
Since ΓS is an arithmetic Fuchsian group, N (ΓS) is also arithmetic. Borel [4]

showed that the measures of arithmetic groups form a discrete subset of R, so for all
but finitely many g ∈ G we have

2π(2g − 2)
a(g + b)

=
4π
a

,

and from this it follows that b = −1.
As an immediate consequence of Lemma 3·1 we deduce that the Accola–Maclachlan

lower bound for N (g) cannot be attained by infinitely many arithmetic surfaces. In
fact, since the extremal surfaces for this bound are uniformized by surface subgroups
of (2, 4, 2(g + 1))-groups with g � 24 [14], and these are not arithmetic by [18], it is
never attained by arithmetic surfaces.
It also follows from Lemma 3·1 that the infinite sequences of Riemann surfaces

with automorphism groups of order 8(g + 1), 8(g + 3), etc., as studied by Accola [1],
Conder and Kulkarni [5], Maclachlan [14] and others, can be constructed only in
non-arithmetic situations.
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We now come to the central question of this paper, which is to find a sharp lower

bound for Nar(g).

Lemma 3·2. Nar(g) � 4(g − 1) for all g � 2.

Proof. Let Γ= 〈γ1, . . . , γ5 | γ2j = γ1 · · · γ5 = 1〉 be an arithmetic group with signature
(2, 2, 2, 2, 2) (see Example 2·2). Consider the homomorphism θ from Γ to the dihedral
group G = D2(g−1) = 〈a, b | a2(g−1) = b2 = (ab)2 = 1〉 of order 4(g − 1) defined by
γj �→ ab, b, ag−2b, b, ag−1 for j = 1, . . . , 5. It is easy to verify that θ is a SKE. The
kernelK = ker (θ) is therefore a surface group, and the surface S = H/K is arithmetic
since K is a finite index subgroup of the arithmetic group Γ. Since μ(Γ) = π and
|G| = 4(g−1), the Riemann–Hurwitz formula gives μ(K) = μ(Γ)|G| = 2π(2g−2) and
so S has genus g. Since Aut (S) � Γ/K �G it follows that Nar(g) � |G| = 4(g − 1).

Theorem 3·1. Nar(g) � 4(g−1) for all g � 2, and this bound is attained for infinitely
many values of g.

Proof. The inequality in the statement of the theorem was proved in the previous
lemma, so it remains to show that the bound is sharp. Suppose that G :=Aut (S) has
order |G| > 4(g − 1) for some compact arithmetic surface S of genus g � 2. We will
successively impose a set of conditions on g which lead to a contradiction, and then
show that infinitely many values of g satisfy these conditions.
By our hypothesis, G�Γ/K for some cocompact arithmetic group Γ and normal

surface subgroup K = ΓS of Γ, with

4π(g − 1) = μ(K) = |G|μ(Γ) > 4(g − 1)μ(Γ), (2)

so μ(Γ) < π. Borel’s discreteness theorem [4] implies that there are only finitely
many measures of cocompact arithmetic groups μ(Γ) < π, and then formula (1) for
μ(Γ) shows that these correspond to a finite set Σ of signatures, all of genus 0 and
with either three or four elliptic periods.
For each σ ∈ Σ, the number q = μ(Γ)/4π is rational and depends only on the

signature σ of Γ, so write q = r/s = rσ/sσ in reduced form, and let R = lcm{ rσ |
σ ∈ Σ }. By (2) we have |G| = (g − 1)/q = (g − 1)s/r for some such q. Since |G| is an
integer, if we choose g so that g − 1 is coprime to R then for surfaces of genus g we
have r = 1 and |G| = (g − 1)s.
Suppose that g − 1 is a prime p > S, where S = max{ sσ | σ ∈ Σ, rσ = 1 }.

Then |G| = ps with s coprime to p and less than p + 1, so Sylow’s Theorems imply
that G has a normal Sylow p-subgroup P � Cp. Let Δ denote the inverse image of
P in Γ, a normal subgroup of Γ with Γ/Δ � Q :=G/P of order s. Let Π denote
the finite set of primes which divide an elliptic period mj of some signature σ ∈ Σ
with rσ = 1. If we take p � Π, then the natural epimorphism G → Q preserves the
orders of the images of all elliptic generators of Γ; the inclusion K � Δ therefore
induces a smooth p-sheeted covering S → T = H/Δ of surfaces, so Δ is a surface
group of genus 1+ (g− 1)/p = 2. Thus Q is a group of automorphisms of a Riemann
surface T of genus 2, so Q is one of a known finite list of groups (for instance,
|Q| � 48). Let E denote the least common multiple of the exponents of all the groups
of automorphisms of Riemann surfaces of genus 2. (All we need here is the fact that
E is finite and even.)
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Since Δ/K � P � Cp it follows that K contains the subgroup Δ′Δp generated by
the commutators and pth powers in Δ, so P is isomorphic (as a ZpQ-module) to a 1-
dimensional quotient of the ZpQ-module Δ/Δ′Δp, where the action ofQ is induced by
conjugation in Γ. NowΔ is isomorphic to the fundamental group π1(T ) of T , so Δ/Δ′ is
isomorphic (as a ZQ-module) to its first integer homology groupH1(T ,Z)�π1(T )ab,
and hence Δ/Δ′Δp is isomorphic (as a ZpQ-module) to H1(T ,Zp) � H1(T ,Z) ⊗
Zp; since T has genus γ = 2, this has dimension 2γ = 4 as a vector space over
Zp. Since p does not divide s = |Q|, Maschke’s Theorem [8, I.17.7] implies that
H1(T ,Zp) is a direct sum of irreducible submodules. Now H1(T ,C) = H1(T ,Z) ⊗ C
is a direct sum of two Q-invariant subspaces, corresponding under duality to the
holomorphic and antiholomorphic differentials inH1(T ,C), and these afford complex
conjugate representations of Q [16]. It follows that there are just three possibilities
for H1(T ,Zp): it may be irreducible, a direct sum of two irreducible 2-dimensional
submodules, or a direct sum of four irreducible 1-dimensional submodules. Since
H1(T ,Zp) has a 1-dimensional quotient, only the last of these three cases can arise.
We have p > 2 (since p > S � 2), so a theorem of Serre [7, V·3·4] implies that Q is
faithfully represented on H1(T ,Zp); thus Q � GL1(p)4 � (Cp−1)4, so Q has exponent
e dividing p− 1. Since e also divides E, if we choose p so that gcd(p− 1, E) = 2 then
e must divide 2. Since Δ is a surface group, the natural epimorphism Γ → Γ/Δ� Q
is a SKE, so each elliptic period of Γ is equal to 2. However, as noted earlier, Γ is
a cocompact Fuchsian group of genus 0 with at most four elliptic periods, so this
contradicts the fact that μ(Γ) > 0.
It remains to check that there are infinitely many values of g satisfying the above

conditions, namely that g − 1 is a prime p where p > S, p � Π, p is coprime to R,
and gcd(p − 1, E) = 2. Dirichlet’s Theorem implies that there are infinitely many
primes p satisfying the last condition (for instance, primes p ≡ −1 mod (E)), and all
but finitely many satisfy the other three conditions (since Π is finite), so the proof is
complete.

Remark 3·1. In this proof arithmeticity is used only to show that there are just
finitely many signatures σ that can occur. It follows that there are similar results for
other classes of groups with this finiteness property.

Remark 3·2. For our chosen values of g, the bound 4(g − 1) is attained only by
dihedral quotients of Γ = Γ(2, 2, 2, 2, 2), as in Lemma 3·2. To see this, repeat the proof
of Theorem 3·1, but starting with |Aut (S)| � 4(g−1) instead of strict inequality. We
eventually find that Γ = Γ(2, 2, 2, 2, 2) or Γ = Γ(1; 2) = 〈α, β, γ | γ2 = [α, β]γ = 1〉;
since Q is abelian (having exponent 2), all commutators in G lie in P and hence
there is no SKE from Γ(1; 2) ontoQ. Thus Γ = Γ(2, 2, 2, 2, 2). The Riemann–Hurwitz
formula gives |Q| = μ(Δ)/μ(Γ) = 4π/π = 4, so Q � V4 (a Klein four-group). Since
Aut (Cp)� Cp−1 the only extensions of Cp by V4 are Cp × V4 and Dp × C2 � D2p;
there is no epimorphism Γ(2, 2, 2, 2, 2)→ Cp, so we must have G�D2p = D2(g−1).

Remark 3·3. Theorem 3·1 has another more elementary proof. Let us start with
the sequence of genera in [14] which attain the Accola–Maclachlan bound. These
have the form g = 89p + 1, with the prime p satisfying five additional conditions. As
mentioned earlier, the extremal surfaces of these genera are uniformized by surface
subgroups of the (2, 4, 2(g+1)) triangle groups, which are non-arithmetic, so for such
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g we have 4(g−1) � Nar(g) < N (g) = 8(g+1). There are only finitely many signatures
σ with μ(2, 4, 2(g + 1)) < μ(σ) < μ(2, 2, 2, 2, 2) which can correspond to arithmetic
groups, and so may be considered as candidates for giving a better lower bound for
Nar(g). Using the Riemann–Hurwitz formula one can apply divisibility arguments
to exclude those signatures which do not have surface subgroups of genus 89p + 1.
Together with known information about arithmetic groups of signature (2, 2, 2, n)
[15, 19] and arithmetic triangle groups [18], this gives the following list of candidates:
(2, 5, 20), (2, 6, 12), (2, 8, 8), (3, 4, 6), (4, 4, 4), (2, 2, 2, 4), (2, 7, 14), (2, 9, 18), (2, 12, 12),
(3, 4, 12), (3, 6, 6), (4, 4, 6), (2, 2, 2, 6), (2, 2, 3, 3), (2, 15, 30), (5, 5, 5), (2, 2, 2, 10). Using
a case-by-case argument, one can show if p is a sufficiently large prime then no
group Γ of such a signature can have a normal surface subgroup of genus g = 89p+1.
If we also impose the conditions on p given in [14] then we obtain a sequence of
genera g for which the arithmetic bound 4(g − 1) is sharp.
In this approach one needs only Sylow’s Theorems and some other basic facts about

finite groups, but the proof is rather routine and not very straightforward: it is easy
to handle the signatures with large elliptic periods, but it becomes more complicated
when the periods are small. The most challenging case is when σ = (2, 2, 2, 4). The
other reason why we prefer our initial proof of Theorem 3·1 will be clear after the
next section, where we find the minimal genus for which our bound is attained.

4. Extremal surfaces

In this section we shall first use the proof of Theorem 3·1 to produce a specific
set of genera g attaining our lower bound for Nar(g). We shall then strengthen the
arguments in order to consider smaller g, and finally determine the least genus for
which Nar(g) = 4(g − 1).
To begin with, let us see which signatures actually form the set Σ corresponding

to the cocompact arithmetic groups Γ with μ(Γ) < π. Firstly, almost all of the
cocompact arithmetic triangle groups in Takeuchi’s list [18] are contained in Σ.
Simple calculations show that the other possible signatures are (2, 2, 2, n) for n � 3,
(2, 2, 3, 3), (2, 2, 3, 4) and (2, 2, 3, 5). The arithmetic groups of signature (2, 2, 2, n) with
odd n were determined by Maclachlan and Rosenberger [15]. For even n, groups of
signature (2, 2, 2, n) have a subgroup of index 2 isomorphic to a (1;n/2)-group, and
the list of arithmetic groups of signature (1;n/2) was obtained by Takeuchi [19].
Combining these results we find that only 12 signatures of the form (2, 2, 2, n) yield
arithmetic groups. It is a matter of direct verification whether or not there are
arithmetic groups of the remaining three signatures, but since this does not affect
our arguments we shall ignore this point and include them in the Table of Signatures
σ ∈ Σ given at the end of the paper.
Now inspecting this list Σ of possible signatures, one can use the proof of The-

orem 3·1 to produce specific values of g attaining the lower bound Nar(g) � 4(g − 1).
For instance, we see that R = 22 · 3 · 5 · 7, so a prime p is coprime to R provided
p > 7. Inspection also shows that Π = {2, 3, 5, 7}, so p � Π if and only if p > 7. We
also have S = 84, so we need p > 84 for the proof of the Theorem to work (though it
can be adapted to apply to certain smaller primes, as we shall see). A standard result
[7, V·1·11] states that a Riemann surface of genus γ � 2 has no automorphisms of
prime order greater than 2γ+1, so taking γ = 2 we see that E is divisible only by the
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primes 2, 3 and 5; hence the condition gcd(p− 1, E) = 2 is satisfied by all odd p such
that p − 1 is not divisible by 3, 4 or 5, that is, p ≡ 23, 47 or 59 mod (60). It follows
that for all such primes p > 84, our bound is attained by g = p + 1. The smallest
prime in this sequence is p = 107, giving g = 108.
If we inspect Σ more closely, and use other group-theoretic techniques in addi-

tion to Sylow’s Theorems, we can find smaller values of g attaining our bound. The
basic idea is that, in order to show that G has a normal Sylow p-subgroup of or-
der p, we replace the rather crude sufficient condition p > S with a more careful
analysis of the possibilities for a group of order ps. We use the fact that (according
to the Table of Signatures in the Appendix) the largest possible values of s (for
r = 1) are s = 84, 48, 40, 36, 30, corresponding to the arithmetic groups of sig-
natures (2, 3, 7), (2, 3, 8), (2, 4, 5), (2, 3, 9), (2, 3, 10) respectively, followed by s = 24
corresponding to (2, 3, 12) and (2, 4, 6), and then s = 21 corresponding to (2, 3, 14).

Example 4·1. Let p = 59, so g = 60. We follow the proof of Theorem 3·1, amending
it where necessary for this particular prime p. Since p > 7, p is coprime to R and
hence |G| = (g − 1)s = 59s. No possible value of s is divisible by 59 (see the Table),
so a Sylow 59-subgroup P of G has order 59. The number of Sylow 59-subgroups
divides s and is congruent to 1 mod (59); this immediately implies that there is only
one such subgroup, so P is normal in G. For the rest of the proof, it is sufficient to
note that p = 59 satisfies p � Π and gcd(p − 1, E) = 2, so g = 60 attains the lower
bound.

Example 4·2. Let p = 47. Once again p > 7, p is coprime to R, and |G| = (g−1)s =
47s. A Sylow 47-subgroup P of G has order 47 since there is no value of s divisible
by 47. We need to show that P is normal in G, so suppose not. The number n47
of Sylow 47-subgroups divides s and is congruent to 1 mod (47), so (by inspection)
n47 = s = 48. This means that P = NG(P ), so G permutes its 48 Sylow 47-subgroups
by conjugation as a Frobenius group. A theorem of Frobenius [8, V·7·6, V·8·2] implies
that G has a normal subgroup N of order 48 (the Frobenius kernel), so Γ has an
epimorphism onto G/N � C47. However, s = 48 implies that Γ is the triangle group
Γ(2, 3, 8), so no such epimorphism exists, and hence P is normal in G. The rest of the
proof is the same, so the lower bound is attained for g = 48. This method also deals
with g = 84, using p = 83 and Γ = Γ(2, 3, 7).

Example 4·3. Let p = 23. As with p = 47, the only place where the proof of
Theorem 3·1 fails is that Sylow’s Theorems are not strong enough to prove that
a Sylow 23-subgroup P of G is normal and has order 23. By inspection of Σ, no
possible value of s is divisible by 23, so |P | = 23. Similarly, if P is not normal, then
there must be n23 = 24 Sylow 23-subgroups, with s = 24 or 48, so |G| = 24 · 23
or 48 · 23. In either case, G permutes its Sylow 23-subgroups by conjugation as a
transitive permutation group G̃ of degree 24. In fact, G̃ is doubly transitive, since
P must have a single orbit of length 23 on the remaining Sylow 23-subgroups: if it
normalized a Sylow p-subgroup P ∗ � P , then PP ∗ would be a subgroup of G of
order 232. Thus |G̃| is divisible by 24 · 23, and it divides |G|, so |G̃| = 24 · 23 or 48 · 23.
In the first case, G̃ is sharply 2-transitive, which is impossible since such groups all
have prime-power degree [9, XII·9·1]. In the second case, since a point-stabilizer
must act as D23, G̃ is a Zassenhaus group with two-point stabilizers of even order



Automorphisms of an arithmetic Riemann surface 297
(= 2); Zassenhaus showed that such groups of degree n have two-point stabilizers of
order at least (n−2)/2 [9, XI·1·10], so this case is also impossible. (Alternatively, the
classification of finite simple groups implies that the doubly transitive finite groups
are all known [6]: those of degree 24 are the symmetric group S24, the alternating
group A24, the Mathieu group M24, the projective general linear group PGL(2, 23),
and the projective special linear group PSL(2, 23), all of which have order greater
than 48 · 23.) Thus P is normal in G, as required, so our lower bound is attained
for g = 24. We will now show that this is the least genus for which the bound is
attained.

In [13], Kazaz classified the elementary abelian coverings of the regular hypermaps
of genus 2. In terms of Fuchsian groups and Riemann surfaces, his results include
the following consequences. Suppose that Γ � Δ � K where Γ is a triangle group, Δ
is a normal surface subgroup of genus 2, and K is a normal subgroup of Γ of prime
index p in Δ (soK is a surface group of genus g = p+1, and G = Γ/K � Aut (H/K)).
Then we have the following possibilities for Γ, Q = Γ/Δ, s = |Q| and p (all of which
occur):

(a) Γ = Γ(2, 8, 8), Q = C8, s = 8, p ≡ 1 mod (8) or p = 2;

(b) Γ = Γ(4, 4, 4), Q = Q8, s = 8, p = 2;

(c) Γ = Γ(2, 4, 8), Q = SD8, s = 16, p = 2;

(d) Γ = Γ(5, 5, 5), Q = C5, s = 5, p ≡ 1 mod (5) or p = 5;

(e) Γ = Γ(2, 5, 10), Q = C10, s = 10, p ≡ 1 mod (5) or p = 5;

(f) Γ = Γ(3, 6, 6), Q = C6, s = 6, p ≡ 1 mod (6) or p = 3;

(g) Γ = Γ(2, 6, 6), Q = C6 × C2, s = 12, p ≡ 1 mod (6) or p = 3.

(Here Q8 is the quaternion group 〈a, b | a4 = 1, a2 = b2, ba = a−1b〉 of order 8, and
SD8 is the semidihedral group 〈a, b | a8 = b2 = 1, ba = a3b〉 of order 16.)
These triangle groups Γ are all arithmetic, so if g = p+1 for any of the above primes

p then Nar(g) � sp > 4(g− 1). Among the genera g < 24, those covered by this result
are g = 3, 4, 6, 8, 12, 14, 18 and 20. To show that each odd g = 2m + 1 satisfies
Nar(g) � 6(g − 1), we can use a SKE from Γ = Γ(2, 2, 2, 6) onto S3 ×Dm. This leaves
g = 2, 10, 16 and 22 among the genera g < 24. A SKE Γ(2, 3, 8) → GL(2, 3) shows
that Nar(2) � 48 (in fact, Nar(2) = N (2) = 48). For g = 10 we can use a SKE from
Γ(2, 2, 2, 4) onto a split extension of C3 × C3 by D4, giving Nar(10) � 72 = 8(g − 1).
We see in case (g) that if Γ = Γ(2, 6, 6) then Δ contains normal surface subgroups K3

and K7 of Γ, of index 3 and 7 in Δ; then K = K3 � K7 is a normal surface subgroup
of Γ of index 21 in Δ, so Nar(22) � 252 = 12(g−1). Finally, for g = 16 we have a SKE
from Γ(3, 3, 4) onto the alternating group A6, which gives Nar(16) � 24(16− 1).
We summarize the results of this section in the following statement:

Theorem 4·1. For all primes p ≡ 23, 47 or 59 mod (60) we have

Nar(g) = 4(g − 1),

where g = p + 1. The least genus g for which Nar(g) = 4(g − 1) is g = 24.
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Appendix. Table of signatures σ ∈ Σ

σ μ(Γ) s/r σ μ(Γ) s/r

(2,3,7) π/21 84 (3,3,4) π/6 24
(2,3,8) π/12 48 (3,3,5) 4π/15 15
(2,3,9) π/9 36 (3,3,6) π/3 12
(2,3,10) 2π/15 30 (3,3,7) 8π/21 21/2
(2,3,11) 5π/33 132/5 (3,3,8) 5π/12 48/5
(2,3,12) π/6 24 (3,3,9) 4π/9 9
(2,3,14) 4π/21 21 (3,3,12) π/2 8
(2,3,16) 5π/24 96/5 (3,3,15) 8π/15 15/2
(2,3,18) 2π/9 18 (3,4,4) π/3 12
(2,3,24) π/4 16 (3,4,6) π/2 8
(2,3,30) 4π/15 15 (3,4,12) 2π/3 6
(2,4,5) π/10 40 (3,5,5) 8π/15 15/2
(2,4,6) π/6 24 (3,6,6) 2π/3 6
(2,4,7) 3π/14 56/3 (3,6,18) 8π/9 9/2
(2,4,8) π/4 16 (3,8,8) 5π/6 24/5
(2,4,10) 3π/10 40/3 (4,4,4) π/2 8
(2,4,12) π/3 12 (4,4,5) 3π/5 20/3
(2,4,18) 7π/18 72/7 (4,4,6) 2π/3 6
(2,5,5) π/5 20 (4,4,9) 7π/9 36/7
(2,5,6) 4π/15 15 (4,5,5) 7π/10 40/7
(2,5,8) 7π/20 80/7 (4,6,6) 5π/6 24/5
(2,5,10) 2π/5 10 (5,5,5) 4π/5 5
(2,5,20) π/2 8 (2,2,2,3) π/3 12
(2,5,30) 8π/15 15/2 (2,2,2,4) π/2 8
(2,6,6) π/3 12 (2,2,2,5) 3π/5 20/3
(2,6,8) 5π/12 48/5 (2,2,2,6) 2π/3 6
(2,6,12) π/2 8 (2,2,2,7) 5π/7 28/5
(2,7,7) 3π/7 28/3 (2,2,2,8) 3π/4 16/3
(2,7,14) 4π/7 7 (2,2,2,9) 7π/9 36/7
(2,8,8) π/2 8 (2,2,2,10) 4π/5 5
(2,8,16) 5π/8 32/5 (2,2,2,12) 5π/6 24/5
(2,9,18) 2π/3 6 (2,2,2,14) 6π/7 14/3
(2,10,10) 3π/5 20/3 (2,2,2,18) 8π/9 9/2
(2,12,12) 2π/3 6 (2,2,2,22) 10π/11 22/5
(2,12,24) 3π/4 16/3 (2,2,3,3) 2π/3 6
(2,15,30) 4π/5 5 (2,2,3,4) 5π/6 24/5
(2,18,18) 7π/9 36/7 (2,2,3,5) 14π/15 30/7
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