M. Belolipetsky
Counting maximal arithmetic subgroups
Belolipetsky, M.; Ellenberg , J.; Venkatesh, A.
Authors
J. Ellenberg
A. Venkatesh
Abstract
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semisimple Lie group using an extension of the method developed by Borel and Prasad.
Citation
Belolipetsky, M., Ellenberg, J., & Venkatesh, A. (2007). Counting maximal arithmetic subgroups. Duke Mathematical Journal, 140(1), 1-33. https://doi.org/10.1215/s0012-7094-07-14011-0
Journal Article Type | Article |
---|---|
Publication Date | Oct 1, 2007 |
Deposit Date | Aug 27, 2008 |
Publicly Available Date | Aug 27, 2008 |
Journal | Duke Mathematical Journal |
Print ISSN | 0012-7094 |
Electronic ISSN | 1547-7398 |
Publisher | Duke University Press |
Peer Reviewed | Peer Reviewed |
Volume | 140 |
Issue | 1 |
Pages | 1-33 |
DOI | https://doi.org/10.1215/s0012-7094-07-14011-0 |
Keywords | Arithmetic groups, Lattices, Lie groups, Maximal lattices, Covolume. |
Public URL | https://durham-repository.worktribe.com/output/1567116 |
Publisher URL | http://projecteuclid.org/euclid.dmj/1190730773 |
Files
Published Journal Article
(205 Kb)
PDF
You might also like
Finite groups and hyperbolic manifolds
(2005)
Journal Article
A bound for the number of automorphisms of an arithmetic Riemann surface
(2005)
Journal Article
On volumes of arithmetic quotients of SO(1, n)
(2004)
Journal Article
Cells and representations of right-angled Coxeter groups
(2004)
Journal Article