G. Everest
The continuing story of zeta
Everest, G.; Röttger, C.; Ward, T.
Authors
C. Röttger
T. Ward
Abstract
We show how the Binomial Theorem can be used to continue the Riemann Zeta Function to the left hand half-plane. This method yields the explicit values of the function at non-positive integers in terms of the Bernoulli numbers.
Citation
Everest, G., Röttger, C., & Ward, T. (2009). The continuing story of zeta. Mathematical Intelligencer, 31(3), 13-17. https://doi.org/10.1007/s00283-009-9053-y
Journal Article Type | Article |
---|---|
Publication Date | Jun 1, 2009 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Oct 23, 2012 |
Journal | Mathematical Intelligencer |
Print ISSN | 0343-6993 |
Electronic ISSN | 1866-7414 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 31 |
Issue | 3 |
Pages | 13-17 |
DOI | https://doi.org/10.1007/s00283-009-9053-y |
Public URL | https://durham-repository.worktribe.com/output/1502602 |
Files
Accepted Journal Article
(94 Kb)
PDF
Copyright Statement
The original publication is available at www.springerlink.com
You might also like
An introduction to Number Theory
(2011)
Book
An Introduction to Number Theory
(2005)
Book
Recurrence Sequences
(2003)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search