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1. TAKING THE LOW ROAD. Riemann’s Zeta Function ζ(s) is defined
for complex s = σ + it with ℜ(s) = σ > 1 by the formula

ζ(s) =

∞
∑

n=1

1

ns
.

There are many ways to obtain the analytic continuation of ζ(s) to the left hand
half-plane. The high road, Riemann’s own [10], uses contour integration at an
early stage, and leads directly to the functional equation. Many authors ([1],
[3], [4], [8], [9], [12], and [13]) use this method, or variants of it, often at a more
leisurely pace. Other methods are known (Chapter 2 of [12] lists seven) but a
toll seems inevitable on any route ending with the functional equation.

There are lower roads which give both the continuation to the whole plane
and the evaluation at non-positive integers but stop short of proving the func-
tional equation. If these are rigorous, yet quick and simple, there must surely be
a case for using them as well. The point of this article to draw wider attention
to these, often very scenic, roads. In his beautiful article [2, Sect. 7], Ayoub
comments upon Euler’s paper of 1740 in which he boldly evaluates divergent
series to obtain ζ(−k) for integers k > 0, thereby predicting the functional
equation. Recently, Sondow [11] has noted one way in which Euler’s argument
can be made rigorous. Simultaneously, Mináč [6] showed how to evaluate ζ(−k)
in an extremely simple and elegant way, by integrating a polynomial on [0, 1].
More recently, Murty and Reece [7] have shown how the continuation and eval-
uation of the Hurwitz zeta function can be obtained in a simple down-to-earth
way and this is applicable to ζ(s) and many L-functions. The point of this note
is to highlight just how easily the continuation and evaluation of ζ(s) can be
obtained. All that we say can be found in the articles cited. For example, our
work-horse (10) is the truncation of Landau’s formula [5, p. 274].

2. A JOURNEY OF A THOUSAND MILES... Notice that for σ > 1,
∫

∞

1

x−s dx =
−1

1 − s
=

1

s − 1
,

which yields at once the continuation to the whole complex plane of the function
represented by the integral for σ > 1. Obviously the continuation is analytic

1

http://arXiv.org/abs/math/0610108v2


everywhere apart from a simple pole at s = 1. For σ > 1,

1

s − 1
=

∫

∞

1

x−s dx =

∞
∑

n=1

∫ n+1

n

x−s dx

=

∞
∑

n=1

∫ 1

0

(n + x)−s dx =

∞
∑

n=1

1

ns

∫ 1

0

(

1 +
x

n

)

−s

dx. (1)

All the sums converge absolutely for σ > 1. In what follows we assume that σ >
1 and that |s| is bounded by K, a fixed (although arbitrary) constant. Now begin
the binomial expansion of the bracketed term, noting that the higher binomial
coefficients all include a factor s:

(

1 +
x

n

)

−s

= 1 −
sx

n
+ sE1(s, x, n), (2)

where the function E1 satisfies

|E1(s, x, n)| 6
C1x

2

n2
6

C1

n2
, (3)

for all x ∈ [0, 1] and all n > 1, with C1 = C1(K) (since E1 is just the error
term of a Taylor series in x/n). Substitute Equation (2) into the sum (1) and
perform the integration with respect to x. We find that

1

s − 1
= ζ(s) −

s

2
ζ(s + 1) + sA1(s), (4)

where A1(s) is analytic for σ > −1 by (3). Thus Equation (4) may be used to
extend ζ(s) to the half-plane σ > 0. It even shows that the extended function
will be analytic there apart from a simple pole at s = 1 with residue 1. In other
words, Equation (4) implies that

lim
s→1

(s − 1)ζ(s) = 1. (5)

Equation (5) can also be written lims→0 sζ(s + 1) = 1. Using this fact, and
letting s → 0+ in Equation (4), we obtain

−1 = ζ(0) −
1

2
,

which yields the known value ζ(0) = −1/2.
The preceding argument begins with the binomial estimate (2), finds the

analytic continuation of the zeta function to the half-plane σ > 0 and evalu-
ates ζ(0). What happens if more terms of the binomial expansion are included?
An additional term in the binomial expansion gives

(

1 +
x

n

)

−s

= 1 −
sx

n
+

s(s + 1)x2

2n2
+ (s + 1)E2(s, x, n);
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notice that the higher binomial coefficients all include a factor (s+1). Here, E2

is a function which satisfies

|E2(s, x, n)| 6
C2x

3

n3
6

C2

n3
,

for all x ∈ [0, 1] and all n, where C2 = C2(K). Substituting this into (1) and
integrating as before gives

1

s − 1
= ζ(s) −

s

2
ζ(s + 1) +

s(s + 1)

6
ζ(s + 2) + (s + 1)A2(s), (6)

where A2(s) is analytic for σ > −2. Thus, Equation (6) may be used to con-
tinue ζ(s) to the half-plane σ > −1. As before, letting s → −1+ and using
Equation (5), we obtain

−
1

2
= ζ(−1) +

1

2
ζ(0) −

1

6
= ζ(−1) −

1

4
−

1

6

yielding the known value ζ(−1) = −1/12.

3. GENERAL METHOD. This method can be repeated in order to con-
tinue ζ(s) further and further to the left of the complex plane. Moreover,
it yields the explicit evaluation at the non-positive integers in terms of the
Bernoulli numbers. The sequence of Bernoulli numbers (Bn) is defined via the
generating function

x

ex − 1
=

∞
∑

n=0

Bn

xn

n!
(7)

from which it is clear that all the Bn are rational numbers. We need two well-
known properties of this fascinating sequence which are stated in the following
lemma.

Lemma 3.1. With Bn defined by (7),

N−1
∑

n=0

(

N

n

)

Bn = 0 for all N > 1, (8)

and

Bn = 0 for all odd n > 3.

Proof. The relation (7) can be written

(ex − 1)

∞
∑

n=0

Bn

xn

n!
= x.

For N > 1 the coefficient of xN in the left-hand side is

N−1
∑

m=0

1

(N − m)!m!
Bm,
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which gives (8) after multiplying by N !. The second statement follows from the
fact that

x

ex − 1
+

x

2
=

x(1 + ex)

ex − 1

is an even function.

The recurrence relation (7) can be used to calculate Bn inductively. The
first few Bernoulli numbers are given below.

n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 − 1

2

1

6
0 − 1

30
0 1

42
0 − 1

30
0 5

66

Theorem 3.2. There is an analytic continuation of ζ(s) to the entire complex

plane where it is analytic apart from a simple pole at s = 1 with residue 1. For

all k > 1,

ζ(−k) = −
Bk+1

k + 1
. (9)

Note that Equation (9) is not true for k = 0 but our method has already
given us the special value ζ(0) = −1/2.

Proof of Theorem 3.2. The analytic continuation of the zeta function to
the half-plane σ > −k arises in exactly the same way as before, by extracting
an appropriate number of terms of the binomial expansion and using induction.
For integral k > 0 and σ > 1, this gives the relation

1

s − 1
= ζ(s) +

k
∑

r=0

(−1)r+1s(s + 1) . . . (s + r)

(r + 2)!
ζ(s + r + 1)

+(s + k)Ak+1(s) (10)

where Ak+1(s) is analytic in σ > −(k + 1), again because all higher binomial
coefficients include a factor (s + k). Notice that k = 0 gives Equation (4)
and k = 1 gives Equation (6).

By induction, we may assume that ζ(s) has already been extended to the
half-plane σ > 1− k so Equation (10) is valid there, because the singularities at
s = 0,−1, . . . are removable. All the functions in Equation (10) except ζ(s) are
defined at least for σ > −k, which gives the analytic continuation of ζ(s) to that
half-plane. Let s → −k+ in (10) and use Equation (5) for the term with r = k
to obtain

−
1

k + 1
= ζ(−k) +

k−1
∑

r=0

(

k

r + 1

)

ζ(−k + r + 1)

r + 2
−

1

(k + 1)(k + 2)
.

Writing r for every r + 1 simplifies this to

0 = ζ(−k) +
1

k + 2
+

k
∑

r=1

(

k

r

)

ζ(−k + r)

r + 1
.
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The term with r = k is known. Using induction on the others gives

0 = ζ(−k) +
1

k + 2
−

k−1
∑

r=1

(

k

r

)

Bk−r+1

(r + 1)(k − r + 1)
−

1

2(k + 1)
. (11)

A simple manipulation of factorials gives

(k + 1)(k + 2)

(r + 1)(k − r + 1)

(

k

r

)

=

(

k + 2

r + 1

)

=

(

k + 2

k − r + 1

)

,

which transforms Equation (11) to

0 = ζ(−k) +
k

2(k + 1)(k + 2)
−

1

(k + 1)(k + 2)

k−1
∑

r=1

(

k + 2

k − r + 1

)

Bk−r+1. (12)

Multiply by (k + 1)(k + 2) and apply Equation (7) with N = k + 2. Only the
terms for r = 0, k, k + 1, missing in Equation (12) survive, yielding

0 = (k + 1)(k + 2)ζ(−k) +
k

2
+ (k + 2)Bk+1 + (k + 2)B1 + B0

= (k + 1)(k + 2)ζ(−k) + (k + 2)Bk+1

and this completes the induction argument.
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