B.P. Lyons
The relative importance of domain size, domain purity and domain interfaces to the performance of bulk-heterojunction organic photovoltaics
Lyons, B.P.; Clarke, N.; Groves, C.
Abstract
The domain size, domain purity and interfacial width between domains for a bulk heterojunction are controllably altered through use of Cahn–Hilliard modeling and their relative effect on OPV performance is predicted using Monte Carlo modeling. It is found that locally sharp, well-connected domains of only 4 nm extent out perform morphologies with broadened interfaces and/or impure domains even when domain sizes were at the ‘optimum’ size of 10 nm. More generally, these data provide information on the most effective method to optimize the as-cast bulk heterojunction morphology depending upon initial domain purity and the nature of interfaces between domains. Further, it indicates why morphology optimization is more effective for some blends than others. It is shown that the quench depth of the blend can be used as a general technique to control the interfacial structure of the morphology and realize substantial increases in short circuit photocurrent.
Citation
Lyons, B., Clarke, N., & Groves, C. (2012). The relative importance of domain size, domain purity and domain interfaces to the performance of bulk-heterojunction organic photovoltaics. Energy & Environmental Science, 5(6), 7657-7663. https://doi.org/10.1039/c2ee21327c
Journal Article Type | Article |
---|---|
Publication Date | Jun 1, 2012 |
Deposit Date | Mar 20, 2012 |
Publicly Available Date | Feb 11, 2014 |
Journal | Energy & Environmental Science |
Print ISSN | 1754-5692 |
Electronic ISSN | 1754-5706 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Issue | 6 |
Pages | 7657-7663 |
DOI | https://doi.org/10.1039/c2ee21327c |
Public URL | https://durham-repository.worktribe.com/output/1479428 |
Files
Accepted Journal Article
(806 Kb)
PDF
You might also like
Decarbonising electrical grids using photovoltaics with enhanced capacity factors
(2023)
Journal Article
Modelling the effect of dipole ordering on charge-carrier mobility in organic semiconductors
(2023)
Journal Article
In-Materio Extreme Learning Machines
(2022)
Book Chapter
Towards Intelligently Designed Evolvable Processors
(2022)
Journal Article
Single event burnout sensitivity of SiC and Si
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search