Dr Margarita Staykova margarita.staykova@durham.ac.uk
Associate Professor
Confined bilayers passively regulate shape and stress
Staykova, M.; Arroyo, M.; Rahimi, M.; Stone, H.A.
Authors
M. Arroyo
M. Rahimi
H.A. Stone
Abstract
Lipid membranes are commonly confined to adjacent subcellular structures or to artificial substrates and particles. We develop an experimental and theoretical framework to investigate the mechanics of confined membranes, including the influence of adhesion, strain, and osmotic pressure. We find that supported lipid bilayers respond to stress by nucleating and evolving spherical and tubular protrusions. In cells, such transformations are generally attributed to proteins. Our results offer insights into the mechanics of cell membranes and can further extend the applications of supported bilayers.
Citation
Staykova, M., Arroyo, M., Rahimi, M., & Stone, H. (2013). Confined bilayers passively regulate shape and stress. Physical Review Letters, 110(2), Article 028101. https://doi.org/10.1103/physrevlett.110.028101
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2013 |
Deposit Date | Sep 3, 2013 |
Publicly Available Date | Jul 11, 2014 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 110 |
Issue | 2 |
Article Number | 028101 |
DOI | https://doi.org/10.1103/physrevlett.110.028101 |
Public URL | https://durham-repository.worktribe.com/output/1471093 |
Files
Published Journal Article
(794 Kb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Phys. Rev. Lett. 110, 028101 © (2013) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Patterning and dynamics of membrane adhesion under hydraulic stress
(2023)
Journal Article
Engaging publics in imagining the future of engineered living materials
(2023)
Journal Article
Encapsulated bacteria deform lipid vesicles into flagellated swimmers
(2022)
Journal Article
Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search