Halim Kusumaatmaja halim.kusumaatmaja@durham.ac.uk
Visiting Professor
The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.
Kusumaatmaja, H., & Wales, D. (2013). Defect motifs for constant mean curvature surfaces. Physical Review Letters, 110(16), Article 165502. https://doi.org/10.1103/physrevlett.110.165502
Journal Article Type | Article |
---|---|
Publication Date | Apr 1, 2013 |
Deposit Date | May 9, 2013 |
Publicly Available Date | Jul 11, 2014 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 110 |
Issue | 16 |
Article Number | 165502 |
DOI | https://doi.org/10.1103/physrevlett.110.165502 |
Public URL | https://durham-repository.worktribe.com/output/1457142 |
Published Journal Article
(663 Kb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Phys. Rev. Lett. 110, 165502 © (2013) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
Bubble Formation in Magma
(2023)
Journal Article
A bending rigidity parameter for stress granule condensates
(2023)
Journal Article
Rough capillary rise
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search