Skip to main content

Research Repository

Advanced Search

Rough capillary rise

Panter, Jack R.; Konicek, Andrew R.; King, Mark A.; Jusufi, Arben; Yeganeh, Mohsen S.; Kusumaatmaja, Halim

Rough capillary rise Thumbnail


Authors

Jack R. Panter

Andrew R. Konicek

Mark A. King

Arben Jusufi

Mohsen S. Yeganeh



Abstract

Capillary rise within rough structures is a wetting phenomenon that is fundamental to survival in biological organisms, deterioration of our built environment, and performance of numerous innovations, from 3D microfluidics to carbon capture. Here, to accurately predict rough capillary rise, we must couple two wetting phenomena: capillary rise and hemiwicking. Experiments, simulations, and theory demonstrate how this coupling challenges our conventional understanding and intuitions of wetting and roughness. Firstly, the critical contact angle for hemiwicking becomes separation-dependent so that hemiwicking can vanish for even highly wetting liquids. Secondly, the rise heights for perfectly wetting liquids can differ between smooth and rough systems, even with the same 0∘ contact angle. Finally, the raised liquid volumes are substantially increased in rough compared to smooth systems. To explain and predict all rise heights and volumes with quantitative accuracy, we present the Dual-Rise model that is valid for general roughness, liquids, and surface wettabilities.

Citation

Panter, J. R., Konicek, A. R., King, M. A., Jusufi, A., Yeganeh, M. S., & Kusumaatmaja, H. (2023). Rough capillary rise. Communications Physics, 6, Article 44. https://doi.org/10.1038/s42005-023-01160-w

Journal Article Type Article
Acceptance Date Feb 27, 2023
Online Publication Date Mar 11, 2023
Publication Date 2023
Deposit Date Apr 11, 2023
Publicly Available Date Apr 11, 2023
Journal Communications Physics
Electronic ISSN 2399-3650
Publisher Nature Research
Peer Reviewed Peer Reviewed
Volume 6
Article Number 44
DOI https://doi.org/10.1038/s42005-023-01160-w
Public URL https://durham-repository.worktribe.com/output/1176227

Files

Published Journal Article (1.7 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
© The Author(s) 2023






You might also like



Downloadable Citations