N. Werner
The Nature of Filamentary Cold Gas in the Core of the Virgo Cluster
Werner, N.; Oonk, J.B.R.; Canning, R.E.A.; Allen, S.W.; Simionescu, A.; Kos, J.; van Weeren, R.J.; Edge*, A.C.; Fabian, A.C.; von der Linden, A.; Nulsen, P.E.J.; Reynolds, C.S.; Ruszkowski, M.
Authors
J.B.R. Oonk
R.E.A. Canning
S.W. Allen
A. Simionescu
J. Kos
R.J. van Weeren
Professor Alastair Edge alastair.edge@durham.ac.uk
Professor
A.C. Fabian
A. von der Linden
P.E.J. Nulsen
C.S. Reynolds
M. Ruszkowski
Abstract
We present a multi-wavelength study of the emission-line nebulae located ~38'' (3 kpc in projection) southeast of the nucleus of M87, the central dominant galaxy of the Virgo Cluster. We report the detection of far-infrared (FIR) [C II] line emission at 158 μm from the nebulae using observations made with the Herschel Photodetector Array Camera and Spectrometer (PACS). The infrared line emission is extended and co-spatial with optical Hα+ [N II], far-ultraviolet C IV lines, and soft X-ray emission. The filamentary nebulae evidently contain multi-phase material spanning a temperature range of at least five orders of magnitude, from ~100 K to ~107 K. This material has most likely been uplifted by the active galactic nucleus from the center of M87. The thermal pressure of the 104 K phase appears to be significantly lower than that of the surrounding hot intracluster medium (ICM), indicating the presence of additional turbulent and magnetic pressure in the filaments. If the turbulence in the filaments is subsonic then the magnetic field strength required to balance the pressure of the surrounding ICM is B ~ 30-70 μG. The spectral properties of the soft X-ray emission from the filaments indicate that it is due to thermal plasma with kT ~ 0.5-1 keV, which is cooling by mixing with the cold gas and/or radiatively. Charge exchange can be ruled out as a significant source of soft X-rays. Both cooling and mixing scenarios predict gas with a range of temperatures. This is at first glance inconsistent with the apparent lack of X-ray emitting gas with kT < 0.5 keV. However, we show that the missing very soft X-ray emission could be absorbed by the cold gas in the filaments with an integrated hydrogen column density of N H ~ 1.6 × 1021 cm–2, providing a natural explanation for the apparent temperature floor to the X-ray emission at kT ~ 0.5 keV. The FIR through ultraviolet line emission is most likely primarily powered by the ICM particles penetrating the cold gas following a shearing induced mixing process. An additional source of energy may, in principle, be provided by X-ray photoionization from cooling X-ray emitting plasma. The relatively small line ratio of [O I]/[C II] <7.2 indicates a large optical depth in the FIR lines. The large optical depth in the FIR lines and the intrinsic absorption inferred from the X-ray and optical data imply significant reservoirs of cold atomic and molecular gas distributed in filaments with small volume filling fraction, but large area covering factor.
Citation
Werner, N., Oonk, J., Canning, R., Allen, S., Simionescu, A., Kos, J., …Ruszkowski, M. (2013). The Nature of Filamentary Cold Gas in the Core of the Virgo Cluster. Astrophysical Journal, 767(2), Article 153. https://doi.org/10.1088/0004-637x/767/2/153
Journal Article Type | Article |
---|---|
Publication Date | Apr 1, 2013 |
Deposit Date | Apr 3, 2014 |
Publicly Available Date | Jun 27, 2014 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 767 |
Issue | 2 |
Article Number | 153 |
DOI | https://doi.org/10.1088/0004-637x/767/2/153 |
Keywords | Galaxies: clusters: intracluster medium, Galaxies: individual (M87), Infrared: ISM. |
Public URL | https://durham-repository.worktribe.com/output/1435226 |
Files
Published Journal Article
(1.1 Mb)
PDF
Copyright Statement
© 2013. The American Astronomical Society. All rights reserved.
You might also like
High-spectral-resolution Observations of the Optical Filamentary Nebula Surrounding NGC 1275
(2024)
Journal Article
A massive multiphase plume of gas in Abell 2390’s brightest cluster galaxy
(2024)
Journal Article
Constraints on thermal conductivity in the merging cluster Abell 2146
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search