Skip to main content

Research Repository

Advanced Search

Impact of maximum allowable cost on CO2 storage capacity in saline formations

Mathias, S.A.; Gluyas, J.G.; Goldthorpe, W.H.; Mackay, E.J.

Impact of maximum allowable cost on CO2 storage capacity in saline formations Thumbnail


J.G. Gluyas

W.H. Goldthorpe

E.J. Mackay


Injecting CO2 into deep saline formations represents an important component of many greenhouse gas reduction strategies for the future. A number of authors have posed concern over the thousands of injection wells likely to be needed. However, a more important criterion than the number of wells is whether the total cost of storing the CO2 is market bearable. Previous studies have sought to determine the number of injection wells required to achieve a specified storage target. Here an alternative methodology is presented whereby we specify a maximum allowable cost (MAC) per tonne of CO2 stored, a priori, and determine the corresponding potential operational storage capacity. The methodology takes advantage of an analytical solution for pressure build-up during CO2 injection into a cylindrical saline formation, accounting for two-phase flow, brine evaporation and salt precipitation around the injection well. The methodology is applied to 375 saline formations from the UK Continental Shelf. Parameter uncertainty is propagated using Monte Carlo simulation with 10,000 realisations for each formation. The results show that MAC affects both the magnitude and spatial distribution of potential operational storage capacity on a national scale. Different storage prospects can appear more or less attractive depending on the MAC scenario considered. It is shown that, under high well injection rate scenarios with relatively low cost, there is adequate operational storage capacity for the equivalent of 40 years of UK CO2 emissions.


Mathias, S., Gluyas, J., Goldthorpe, W., & Mackay, E. (2015). Impact of maximum allowable cost on CO2 storage capacity in saline formations. Environmental Science and Technology, 49(22), 13510-13518.

Journal Article Type Article
Acceptance Date Oct 19, 2015
Online Publication Date Nov 4, 2015
Publication Date Nov 17, 2015
Deposit Date Oct 20, 2015
Publicly Available Date Oct 20, 2016
Journal Environmental Science and Technology
Print ISSN 0013-936X
Electronic ISSN 1520-5851
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 49
Issue 22
Pages 13510-13518


Accepted Journal Article (901 Kb)

Copyright Statement
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see

You might also like

Downloadable Citations