Ekaterina Lgotina ekaterina.v.lgotina@durham.ac.uk
PGR Student Doctor of Philosophy
Mathematical modelling of pressure induced freezing point depression within soils exhibiting strong capillary pressure effect
Lgotina, Ekaterina; Mathias, Simon; Lloret-Cabot, Marti; Ireson, Andrew
Authors
Professor Simon Mathias s.a.mathias@durham.ac.uk
Professor
Dr Marti Lloret-Cabot marti.lloret-cabot@durham.ac.uk
Associate Professor
Andrew Ireson
Contributors
William M. Coombs
Editor
Abstract
Many geotechnical applications are affected by the melting and formation of ice in soils. Current state of practice involves incorporating the presence of ice within hydrological models for unsaturated soils using the so-called generalised Clapeyron equation [1]. This represents a modification of the conventional Clapeyron equation by allowing for the pressure in ice and liquid to be different at an ice-liquid interface. Such an idea has come about due to the effects of surface tension, which become important within the pores of porous materials such as soil and rock. However, a common assumption when using the generalised Clapeyron equation is that the ice pressure remains constant [2], which leads to unrealistic behaviour in the presence of significant pore-water pressure changes. Here we develop a new mathematical modelling framework to explore the impact of pressure induced freezing point depression within soils exhibiting strong capillary pressure effect. We solve the coupled mass and energy conservation problem using method of lines (e.g., [3]) with pressure and enthalpy as the primary dependent variables. Strong non-linear coupling develops through the chemical potential equation accounting for coexistence of ice and water in the presence of surface tension [5]. We present a sensitivity analysis showing how freezing point depression evolves within a porous block subject to temperature surface boundary cooling and varied capillary pressures.
Citation
Lgotina, E., Mathias, S., Lloret-Cabot, M., & Ireson, A. (2024, April). Mathematical modelling of pressure induced freezing point depression within soils exhibiting strong capillary pressure effect. Presented at 2024 UK Association for Computational Mechanics Conference, Durham, UK
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 2024 UK Association for Computational Mechanics Conference |
Start Date | Apr 10, 2024 |
End Date | Apr 12, 2024 |
Acceptance Date | Jan 26, 2024 |
Online Publication Date | Apr 25, 2024 |
Publication Date | Apr 25, 2024 |
Deposit Date | Jun 21, 2024 |
Publicly Available Date | Jul 11, 2024 |
Peer Reviewed | Peer Reviewed |
Pages | 52-55 |
Book Title | UKACM Proceedings 2024 |
DOI | https://doi.org/10.62512/conf.ukacm2024.079 |
Public URL | https://durham-repository.worktribe.com/output/2488064 |
Files
Published Conference Paper
(547 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nd/4.0/
You might also like
Relevance of correlation length in geotechnical engineering
(2024)
Presentation / Conference Contribution
Prediction of resilient modulus of unsaturated soils considering inter-particle suction bonding
(2024)
Presentation / Conference Contribution
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Spatial Variability of Soil Properties in Saudi Arabia: Estimation of Correlation Length
(2024)
Presentation / Conference Contribution
A non-hysteretic simplification to the Glasgow Coupled Model (GCM)
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search