A.J. Page
3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations
Page, A.J.; Elbourne, A.; Stefanovic, R.; Addicoat, M.A.; Warr, G.G.; Voïtchovsky, K.; Atkin, R.
Authors
A. Elbourne
R. Stefanovic
M.A. Addicoat
G.G. Warr
Professor Kislon Voitchovsky kislon.voitchovsky@durham.ac.uk
Professor
R. Atkin
Abstract
In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)–bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL–solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN–graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid–solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.
Citation
Page, A., Elbourne, A., Stefanovic, R., Addicoat, M., Warr, G., Voïtchovsky, K., & Atkin, R. (2014). 3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 6(14), 8100-8106. https://doi.org/10.1039/c4nr01219d
Journal Article Type | Article |
---|---|
Publication Date | Jul 27, 2014 |
Deposit Date | Aug 15, 2014 |
Publicly Available Date | Dec 11, 2014 |
Journal | Nanoscale |
Print ISSN | 2040-3364 |
Electronic ISSN | 2040-3372 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 14 |
Pages | 8100-8106 |
DOI | https://doi.org/10.1039/c4nr01219d |
Public URL | https://durham-repository.worktribe.com/output/1424874 |
Files
Published Journal Article
(571 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc/4.0/
Copyright Statement
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
You might also like
The Effect of Ageing on the Structure and Properties of Model Liquid Infused Surfaces
(2020)
Journal Article
Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search